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ABSTRACT

We give a proof of the existence of a Nash equilibrium for n -person
normal form games when each player’s utility function is continuous
w.r.t. strategy profiles, and concave and differentiable w.r.t. his own
strategy. The proof uses only elementary mathematical tools such as
mathematical induction. We show that this equilibrium existence re-
sult is sufficiently general to imply the Brouwer Fixed Point Theorem.
The Kakutani Fixed Point Theorem is obtained as a corollary by using
standard techniques.
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1. Introduction

We give an elementary proof of the existence of a Nash equilibrium for n -person normal
form games (Nash 1950, Nash 1951). The proof uses only basic mathematical tools such as
mathematical induction, continuity of mappings, and compactness of subsets. This makes
the proofs longer than necessary, but hopefully also more accessible to a wider audience.1

We show that the Brouwer Fixed Point Theorem (Brouwer 1912) follows from a Nash
equilibrium existence theorem when each player’s utility function is continuous w.r.t. strat-
egy profiles, and concave and differentiable w.r.t. his own strategy. The Kakutani Fixed
Point Theorem (Kakutani 1941) is obtained as a corollary by using standard techniques.
This in turn implies the existence of a Nash equilibrium for normal form games when each
player’s utility functions satisfy certain conditions.

If utility functions are continuous on a compact convex subset of strategy profiles, and
quasiconcave w.r.t. each player’s own strategy, the best reply correspondence is nonempty
valued, convex valued, and upper semicontinuous. Therefore the Kakutani Fixed Point
Theorem implies the existence of a Nash equilibrium. Indeed, the conventional approach to
prove the existence of equilibrium is to apply a suitable fixed point theorem such as the ones
by Kakutani or Brouwer.

There has been certain kind of complementarity in the development of equilibrium theory
and fixed point theory. For example, Kakutani was inspired by the Minimax Theorem of
von Neumann (von Neumann (1928)) and wanted to find a simpler proof of it, and so he
invented his fixed point theorem (see Park 1999, p. 198). For accessible surveys of fixed
point problems and applications, see e.g. Border (1985), Ichiishi (1983), Park (1999).

Kakutani’s theorem relies only on a few basic properties of a correspondence and its
domain, and Brouwer’s theorem has even more elementary structure. In game theoretic
models, best reply mappings have a special product structure, and in addition, information
about the utility function is missing from the formulation of Brouwer’s or Kakutani’s the-
orem. Therefore in some cases it might be possible to prove a fixed point theorem by first
showing the existence of a Nash equilibrium, as we do in this paper.

2. The Results

Given a nonempty X ⊂ R
n, a correspondence f : X ⇒ R

m is a mapping such that
f(x) ⊂ R

m. A correspondence f : X ⇒ R
m is upper semicontinuous (u.s.c.), if xn −→ x̄,

yn ∈ f(xn) and yn −→ ȳ, imply that ȳ ∈ f(x̄). A correspondence f : X ⇒ R
m is lower

semicontinuous (u.s.c.), if for each y ∈ f(x), and for each sequence {xn} converging to x,
there exists a sequence {yn}, y

n ∈ f(xn), converging to y.

1Franklin (1983), p.15: ”A private survey indicates that 96% of all mathematicians can state the Brouwer
Fixed Point Theorem, but only 5% can prove it. Among mathematical economists, 95% can state it, but
only 2% can prove it (and these are all ex-topologists).”, and ”While 96% of mathematicians can state the
Brouwer Fixed Point Theorem, only 7% can state the Kakutani theorem.”
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Let G = {(ui)i∈N , (Si)i∈N ;N} be an n -person normal form game such that N =
{1, . . . , n} is the set of players, the strategy set Si is a nonempty compact convex sub-
set of Rni , and the utility function ui : Π

n
i=1Si −→ R is continuous and quasiconcave with

respect to si ∈ Si, given any s−i ∈ Πj 6=iSj, for every i ∈ N . In Proposition 1 we assume
that each ui is concave and differentiable w.r.t. si.

A strategy profile s ∈ S ≡ Πn
i=1Si is a Nash equilibrium, if for all i ∈ N it holds that

ui(s̄) ≥ ui(si, s̄−i), for all si ∈ Si. Denote by Bi(s) the set of strategies of i that maximize
ui(si, s−i) given s−i. The strategies in Bi(s) are called player i’s best replies against s−i. Let
B(s) = Πn

i=1Bi(s) be the product of best replies. Then s̄ is a Nash equilibrium, if and only
if s̄ ∈ B(s̄).

We will prove the existence of a Nash equilibrium in a special case when the strategy
sets have a simple product form: Si = [0, 1]ni , for some natural number ni ≥ 1.

Proposition 1. Let G be a normal form game such that strategy sets are of the form Si =
[0, 1]ni ,∈ N , and utility functions are continuous on Πn

i=1Si, and concave and differentiable

w.r.t. each player’s own strategy si ∈ Si, given any s−i ∈ Πj 6=iSj. Then there exists a Nash

equilibrium.

Proof. Let G be an n -person game such that Si = [0, 1], for each i ∈ N . Given any strategies
s2, . . . , sn of players 2, . . . , n, player 1 has a best reply against s−1. We will show in Step 1.
that there exists an equilibrium each player i = 1, . . . , n has a strategy set [0, 1]. In Step 2.
we show that an equilibrium exists when strategy sets are of the form [0, 1]ni .

Step 1.
Suppose that given any s1 ∈ S1, the n−1 -player game played by players i = 2, . . . , n has

a Nash equilibrium s−1(s1). Since utility functions are continuous, the set of Nash equilibria
of this n−1 -player game is compact for each s1. Denote by E(s1) the set of these equilibria.
Then E : S1 ⇒ S−1 is u.s.c. To see this, let {sk1} be a sequence converging to s1. Take
any sk−1 ∈ E(sk1), k = 1, 2, . . .. Then {sk−1} has a convergent subsequence because strategy
sets are compact, and we may assume w.l.o.g. that this sequence itself converges to s−i. By
continuity of utility functions, s−i ∈ E(s1). Therefore E is u.s.c. and it has a closed graph
gr(E) = {(s1, s−1) | s−1 ∈ E(s1), s1 ∈ [0, 1]}. The graph gr(E) is compact because it is
closed in S1 × · · · × Sn.

For each s1 > 0, let E+(s1) ⊂ E(s1) denote the subset of those equilibria s−1 ∈ E(s1)
for which there exists a increasing sequence sk1 converging to s1, and a sequence sk−1 ∈ E(sk1)
converging to s−1. Clearly, E

+(s1) is nonempty and closed for each s1 > 0.
Suppose s1 = 1 is not a best reply against any s−1 ∈ E(1). Then every best reply

r1(s−1) ∈ B1(s−1) of player 1 against any s−1 ∈ E(1) satisfies r1(s−1) < 1. It is not difficult
to see that there exists δ ∈ (0, 1) such that for all t ∈ (δ, 1), and all s−1 ∈ E+(t) ⊂ E(t),
every best reply r1(s−1) satisfies r1(s−1) < t. Let δ∗ be the infimum of such numbers δ.

There are two cases:
a) at δ∗, there exists s−1 ∈ E+(δ∗) and a best reply r1(s−1) such that r1(s−1) ≥ δ∗ (this

case covers the situation δ∗ = 0);
b) at δ∗, for every s−1 ∈ E+(δ∗) and any best reply r1(s−1) it holds that r1(s−1) < δ∗.
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Case a). By u.s.c. of best replies, for s−1 ∈ E+(δ∗) such that r1(s−1) ≥ δ∗, there exists
also another best reply r′1(s−1) ≤ δ∗. Since best reply correspondences have convex values,
the strategy δ∗ is also a best reply against s−1.

Case b). By definition of δ∗, arbitrarily close to δ∗ there are numbers t < δ∗ such
that there exists s−1 ∈ E+(t) such that for some best reply r1(s−1) ∈ B1(s−1) it holds
that r1(s−1) ≥ t. Let tk be an increasing sequence converging to δ∗ such that there exists
sk−1 ∈ E+(tk) such that for some best reply r1(s

k
−1) it holds that r

k
1(s−1) ≥ tk. Then {sk−1}

has a convergent sequence and without loss of generality this sequence itself converges to
s∗−1.

Now s∗−1 ∈ E+(δ∗), since tk be an increasing sequence converging to δ∗, and sk−1 ∈ E+(tk)
converges to s∗−1 ∈ E+(δ∗). By u.s.c. of best replies, there is a best reply r1(s

∗
−1) satisfying

r1(s
∗
−1) ≥ δ∗, a contradiction with the Case b).
Therefore there exists a Nash equilibrium, when Si = [0, 1] for each i = 1, . . . , n.

Step 2.
Suppose a Nash equilibrium exists in a game G− when Si = [0, 1]ni , ni ≥ 1. Choose

any player i, and replace his strategy set [0, 1]ni by a strategy set [0, 1]ni+1. Without loss of
generality, let i = 1. Let G be a game such that S1 = [0, 1]n1+1, and Sj = [0, 1]nj , for j 6= i.
Denote player 1’s strategies by x = (x1, s1), where s1 ∈ [0, 1]n1 , and x1 ∈ [0, 1].

Fix any x1 ∈ [0, 1], let player 1 choose freely from s1 ∈ [0, 1]n1 , and let other players j

choose freely from [0, 1]nj . Then this game G− has a Nash equilibrium s(x1) by induction
assumption. Denote by E(x1) the set of all Nash equilibria given x1. By a similar argument
than in the one-dimensional case of Step 1, the correspondence E : [0, 1] ⇒ [0, 1]n1 × · · · ×
[0, 1]nn is u.s.c. and hence it has a closed graph.

The rest of the argument is analogous to the one given in the one-dimensional case in
Step 1. Define E+(x1) in the same way as E+(s1) was defined in Step 1. By a similar
argument, one can show that there exists δ∗ ∈ [0, 1] such that s(δ∗) is a Nash equilibrium in
the game G−, and δ∗ maximizes the utility function u1((x1, s1(δ

∗)), s−1(δ
∗)) of player 1.

We have found a strategy profile ((δ∗, s1(δ
∗)), s−1(δ

∗)) such that
1) sj(δ

∗) is a best reply against s−j(δ
∗) for every j 6= 1;

2) s1(δ
∗) is a best reply against (δ∗, s−1(δ

∗));
3) δ∗ is a best reply against (s1(δ

∗), s−1(δ
∗)).

Since each ui is concave and differentiable w.r.t. si, cases 2) and 3) mean that the first
order partial derivatives of u1 equal zero (or are nonpositive in case of a boundary solution).
Therefore (δ∗, s1(δ

∗)) is a best reply against s−1(δ
∗), and ((δ∗, s1(δ

∗)), s−1(δ
∗)) is a Nash

equilibrium of the game G.

Remark 1. Note that the assumption that each ui is concave and differentiable w.r.t. si
was needed only in the last paragraph of the proof. It might not be easy to get rid of the
differentiability assumption. Consider a function u(x1, x2) = min{x1, x2} on [0, 1]2. The
function u is concave w.r.t. (x1, x2), but not differentiable on the diagonal. The maximum
is at (1, 1). If the variables x1 and x2 are chosen by two agents independently, both agents
having the utility function u, then any point on the diagonal is a Nash equilibrium.

3



We will next show that Proposition 1 implies the Brouwer Fixed Point Theorem.

Theorem 1 (Brouwer Fixed Point Theorem). If X ⊂ R
m is a nonempty compact and convex

subset of Rm, and f : X −→ X is a continuous function, then f has fixed point.

Proof. We will first prove the Brouwer Fixed Point Theorem in the special case when X =
[0, 1]m.

Given a continuous function g : [0, 1]m −→ [0, 1]m, define a two-person game as follows.
Let S1 = S2 = [0, 1]m, and define u1(s1, s2) = −[s11 − g1(s2)]

2 − · · · − [s1m − gm(s2)]
2,

and u2(s1, s2) = −[s21 − s11]
2 − · · · − [s2m − s1m]

2, where si = (si1, . . . , sim), and g(s2) =
(g1(s2), . . . , gm(s2)).

The functions ui are continuous, and concave and differentiable w.r.t. si. By Propo-
sition 1, the game G has a Nash equilibrium (s̄1, s̄2). Therefore s̄1 = g(s̄2), and s̄2 = s̄1.
Hence s̄1 is a fixed point of g.

Clearly a fixed point exists also for a continuous g : [−K,K]m −→ [−K,K]m, given any
K > 0.

Consider next the general case f : X −→ X, where X ⊂ R
m is any compact and

convex set. We may assume w.l.o.g. that the origin 0 is an interior point of X, and that
X ⊂ [−K,K]m. For each x ∈ [−K,K]m, let t(x) > 0 be the greatest number such that
t(x)x ∈ X, if x ∈ [−K,K]m \X, and t(x) = x, if x ∈ X. Define g : [−K,K]m −→ [−K,K]m

by g(x) = f(t(x)).
Then g has a fixed point since g is continuous. All fixed points of g are in X, and they

are also fixed points of f .

Remark 2. The trick in the proof of Theorem 1 how to replace a compact and convex set
[−K,K]m by more general compact and convex sets X is well-known, and it is given in the
proof for completeness only without any claim of originality. There are other well-known
methods that would work equally well.

Corollary 1 (Kakutani Fixed Point Theorem). If X ⊂ R
n is a nonempty compact and

convex subset of Rn, and f : X ⇒ X is a upper semicontinuous correspondence, then f has

fixed point.

Proof. Let gr(f) = {x, f(x) | x ∈ X} be the graph of f . The graph is closed since f is u.s.c.
Given (x, y) ∈ gr(f), and ε > 0, let B((x, y), ε) ⊂ X ×X be the open ε -ball around (x, y)
in X ×X. Let

V (gr(f), ε) =
⋃

(x,y)∈gr(f)

B((x, y), ε).

be the open ε neighbourhood around gr(f). Then the correspondence F ε : X ⇒ X

defined by F ε(x) = {y ∈ X | (x, y) ∈ V (gr(f), ε)} is lower semicontinuous.
By Michael’s Selection Theorem (Michael 1956), to each ε, there exists a continuous

function f ε : X −→ X such that (x, f ε(x)) ∈ gr(F ε). By the Brouwer Fixed Point Theorem,
f ε has a fixed point xε. The set {(xε, xε)}ε has a cluster point (x̄, x̄) in gr(f), and x̄ is a
fixed point of f .
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Remark 3. The trick of using Michael’s Selection Theorem to prove Kakutani Fixed Point
Theorem is well-known and shown here for completeness only.
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