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1 Introduction

There has been a longlasting debate about whether a linear or a nonlinear modeling

approach should be applied in the forecasting of macroeconomic time series. While it

is often argued that nonlinearity is an inherent feature of macroeconomic time series,

linear forecasts have been found to perform mostly better than forecasts based on various

nonlinear models. There are cases where nonlinear models have yielded more accurate

forecasts than linear models, but generally it has remained quite unclear to what extent

and when nonlinear forecasts are likely to be useful in macroeconomic forecasting. The

literature from which these observations arise will be discussed along the course of this

section.

In this paper, we use a novel approach to examine how common it is that macro-

economic time series have exploitable nonlinear predictability in their own history. The

target of our empirical analysis is the FRED-MD data set introduced by McCracken and

Ng (2016). The data set contains 128 monthly macroeconomic time series with obser-

vations (mostly) from January 1959 to December 2017. The variables in the data set

cover sectors and markets that are central to the development of the U.S. economy. By

analyzing this data set we get a comprehensive view of what to expect about typical

macroeconomic time series in terms of nonlinear predictability.

Our analysis makes use of the so called boosting estimator from the machine learning

literature. This technique has been found to have superior performance in estimating

complex nonlinear regression functions. As this method is nonparametric and can be made

very flexible, it offers us a device for examining whether the data can reveal any nonlinear

predictability without need to make specific assumptions on the form of the underlying

nonlinear model. This is important, because the target set of time series is so large that

there is no chance that any given class of parametric models is able to fit to all of them.

The boosting estimator is also more handy and reliable than the artificial neural network

(ANN) technique that has been the dominant nonparametric alternative in the previous

studies closest to the present one (especially, Stock and Watson (1999), Marcellino (2005),
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Teräsvirta, van Dijk and Medeiros (2005), Kock and Teräsvirta (2016)).1

The starting question in the present study is whether the boosting estimation technique

or a conventional linear prediction strategy yields more accurate 1 to 12 month ahead

predictions for a given series in the FRED data set. Our empirical results indicate that at

least every fourth series in the FRED-MD data set has nonlinear predictability exploitable

by the boosting method. On the other hand, we find that for some series the boosting

estimator has much worse out-of-sample performance than the linear prediction procedure.

This observation is similar to what related previous studies have made on other nonlinear

prediction techniques. Hence, we would wish to have a testing procedure that could

diagnose which of the two techniques is more accurate out-of-sample. Unfortunately,

although the econometrics literature has developed various tests for comparing the out-

of-sample accuracy of alternative forecasts, none of them seems to work reliably enough

in the present context.2

In the absence of a satisfactory pretest for assessing whether the linear or the boost-

ing technique is more accurate out-of-sample, we include in our analysis a two-stage

estimation procedure, where the first step involves estimating the conventional linear pre-

diction model and the second step uses the boosting technique to “fine-tune” it. We call

this technique as the two-stage boosting method. Altogether, our analysis examines the

performance of three prediction procedures: (i) the conventional linear method, (ii) the

“pure” or “direct” boosting method, and (iii) the two-stage boosting method.

1See Kock and Teräsvirta (2016) for discussion on problems in the ANN modeling.
2In an ongoing study, we use simulation techniques and the present data set to examine how well

various existing testing techniques (e.g., those proposed in Clark and McCracken (2001), Clark and West

(2006, 2007), Corradi and Swanson (2002), Diebold and Mariano (1995), and Giacomini and White

(2006)) are able to determine in advance whether the boosting or the linear prediction procedure has the

best out-of-sample performance. So far, we have found that none of the examined testing methods is

sufficiently reliable for this purpose. One problem is that it is not clear whether the boosting technique

is consistent for a target model that nests or does not nest the linear null model. Moreover, prediction

accuracy tests (such as the one of Giacomini and White (2006)) that do not make specific assumptions on

the nesting structure of the null and the alternative models tend to entail that the underlying simulated

out-of-sample predictions are generated by small enough sample sizes (to prevent estimation errors from

vanishing), which is not an advantage to the flexible boosting technique.
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We start the analysis by conducting a brief simulation study where we compare the

performance of the three methods. The simulation demonstrates that the boosting esti-

mation method can successfully capture various forms of nonlinearities in samples that

are similar in size to what we have in the empirical application. We also find no clear

differences in the out-of-sample accuracy between the pure and the two-stage boosting

methods. Overall, the simulations confirm that both boosting procedures have the capac-

ity to outperform the conventional linear procedure in situations where there is noticeable

nonlinear predictability beyond the best linear approximation. As a whole, the detailed

simulation results help us to interpret the results that we obtain in the empirical analysis.

The most interesting result from our empirical analysis concerns the two-stage boosting

procedure. In a nutshell, we find that it is almost always at least as accurate as the

“pure” boosting procedure, while it is rarely less accurate than the linear procedure.

Hence, among the three examined procedures the two-stage boosting technique is the

most reliable one. This finding holds, often even more clearly, in alternative settings,

where the original data is restricted to the time period before the 2008 financial crisis,

and when we use conventional techniques to handle “outlier” observations. Our analysis

suggests that the safest approach for exploiting nonlinear predictability in the forecasting

of macroeconomic variables is to apply a flexible nonlinear procedure not as such, but

rather as a device to fine-tune the conventional linear autoregressive model.

In terms of the main question and the volume of the analyzed macroeconomic variables,

the present paper is closest to the four papers already sited in the third paragraph above,

although the present data set contains more time series observations than used in the

mentioned papers. Studies that consider more specific groups of macroeconomic variables

or that otherwise discuss the problem of choosing between a linear and a non-linear

prediction model include Swanson and White (1997a, 1997b), De Gooijer and Kumar

(2002) and Marcellino (2004). For reviews of related literature see Clements, Franses and

Swanson (2004) and Teräsvirta (2006).

Our paper is not the first one that applies the boosting method to predict macroeco-

nomic variables. Robinzonov, Tutz and Hothorn (2012) use the boosting technique to

predict the German industrial production. They find that the boosting method is com-
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petitive to the other methods they consider, but does not dominate them in all cases.

Wohlrabe and Buchen (2014) use the boosting estimation technique to fit prediction

models for a range of macroeconomic time series. However, they consider only a linear

autoregressive model with additional regressors and focus on the question how well (in

terms of out-of-sample accuracy) the boosting method selects the regressors from a large

pool of variables. Kim and Swanson (2014) conduct a prediction horse race between

various machine learning techniques including the boosting method, but their analysis

focuses on comparing advanced estimation techniques rather than on analyzing how these

compare with the conventional linear prediction procedure.

The two-stage boosting procedure applied in this paper is related to a boosting-based

prediction technique presented in Taieb and Hyndman (2014). In the latter paper, a mul-

tiperiod ahead prediction is obtained by iterating a one-step ahead linear autoregressive

(AR) model with the modification that the boosting method is applied to fine-tune the

iterated AR prediction. Our two-stage approach differs from this strategy in that we

tailor the first-stage linear AR model for each horizon separately. Our strategy is more

straightforward to apply in the present context. We leave it for later research to study

whether the two strategies differ in performance.

The rest of the paper is organized as follows. Section 2 presents the basic prediction

problem at the general level. Section 3 introduces the boosting estimation technique and

the two alternative ways we apply it to forecasting. The simulation study is presented in

Section 4. Section 5 conducts the empirical analysis. Section 6 gives concluding remarks.

2 The Starting Point

Let Yt be a time series of interest. At time t, we seek to use the current and past

observations Yt, Yt−1, Yt−2, ... to predict the future value Yt+h, where h is the forecast

horizon.

In our application, Yt is often a logarithmic value of an original series. Moreover, Yt

may be I(0), I(1), or I(2), where I(k) signifies integrated of order k. I(0) is stationary, while

I(1) and I(2) are nonstationary series. If Yt is I(1) [I(2)], its difference ∆Yt = Yt − Yt−1
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[double difference ∆2Yt = Yt − 2Yt−1 + Yt−2] is I(0).

As, e.g., in Stock and Watson (1999), we form the h-period ahead prediction in one of

three ways depending on the order of integration of the series. In each case, the predicted

variable is denoted by xt+h and the predictors by yt, yt−1, .... If Yt is I(0) [I(1)] {I(2)},

then xt+h = Yt+h and yt = Yt [xt+h = Yt+h − Yt and yt = ∆Yt] {xt+h = Yt+h − Yt − h∆Yt

and yt = ∆
2Yt}. Given a prediction x̂t+h made at time t for xt+h, the prediction for Yt+h

is x̂t+h [Yt + x̂t+h] {Yt + h∆Yt + x̂t+h}, if Yt is I(0) [I(1)] {I(2)}.

In the theoretical analysis, we assume that yt is a strictly stationary and ergodic time

series. This also means that the same applies to xt (in all three cases). We will let yt(k)

signify the vector (yt, yt−1, ..., yt−k+1)
′ ∈ Rk.

The h-step ahead prediction is obtained by using available data to estimate the model

xt+h = gh(yt(p)) + et+h (1)

where gh(yt(p)) is the prediction function and et+h = xt+h − gh(yt(p)) is the prediction

error.

In our empirical analysis, we have monthly data and we choose p = 12 as is common

in macroeconomic applications.

As is usual in economic time series forecasting, the accuracy of the prediction gh(yt(p))

is assessed by the mean squared error (MSE)

MSE(gh(yt(p))) = E(xt+h − gh(yt(p)))
2 (2)

The optimal prediction that minimizes (2) is the conditional mean

g∗h(yt(p)) = E(xt+h|yt(p))

That is, g∗h(yt(p)) is the solution to the minimization problem

min
gh∈G

MSE(gh(yt(p)))

where G is (essentially) the class of all functions from Rp to R.

A common approach is to estimate the prediction model by assuming a parametric

prediction function gh(yt(p); θh), where the parameter θh lies in a (closed) space Θh ⊂ R
dh,
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with dh being finite. Given a sample y1, ..., yT , one would then find an estimate θ̂h for θh

such that it minimizes the empirical (in-sample) mean squared error

M̂SE(θh) =
1

T − p− h

T−h∑

t=p+1

(xt+h − gh(yt(p); θh))
2

The underlying estimation procedure may include intermediate specification steps, where

the original dimension ofΘh is reduced. For example, one may use a statistical information

criterion (like AIC or BIC) to select what elements (lags) from yt(p) are eventually used

in the estimated prediction function.

For a variety of parametric models, the above outlined estimator θ̂h is consistent for

the population level parameter

θ∗h = arg min
θh∈Θh

MSE(θh)

where MSE(θh) is as in (2) with gh(yt(p)) = gh(yt(p); θh). Underlying is the assumption

that θ∗h is unique and an innerpoint of Θh.

It is most common to specify gh(yt(p); θh) as a linear function

gh(yt(p); θh) = θh0 + θh1yt + · · ·+ θhpyt−p+1 (3)

In this case, gh(yt(p); θ̂h) is consistent for the linear projection of xt+h on yt(p), which

we denote by g+h (yt(p)). Furthermore, we let LMSE(h; p) =MSE(g
+
h (yt(p))) signify the

corresponding MSE.

WhileMMSE(h; p) =MSE(g∗h(yt(p))) is the minimumMSE for a h-period ahead pre-

diction based on yt(p), LMSE(h; p) is the minimum MSE based on yt(p) under the condi-

tion that the prediction function is linear. We always haveMMSE(h; p) ≤ LMSE(h; p),

and as g∗h(yt(p)) is in general nonlinear, the underlying inequality is most often strict, that

is, MMSE(h; p) < LMSE(h; p). Hence, at the population level, the linear model seldom

uses the predictive content of yt(p) maximally.

The literature has compared the predictive performance of the linear model against

various nonlinear models for gh(yt(p)) in (1) (e.g., Stock and Watson (1999), Marcellino

(2005), Teräsvirta, van Dijk and Medeiros (2005), Kock and Teräsvirta (2016)).3 In these

3On the part of the nonlinear modeling, the mentioned studies focus mostly on the smooth transition

autoregressive, the exponential smoothing, and the artificial neural network models.
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comparisons the idea is to measure the performance of the actual estimated prediction

function. If ĝh(yT (p)) is an estimate for gh(yt(p)) in (1) based on the sample y1, ..., yT ,

then its predictive performance is measured by the out-of-sample MSE4

MSE(ĝh(yT (p))) = E(xT+h − ĝh(yT (p)))
2 (4)

The expectation in (4) can be understood in two ways. First, we may think it as a

conditional expectation given a particular sample of size T . This is closest to the real

life situation, where we always wish to find the prediction rule that is optimal given the

actual observations in hand. An issue with this interpretation is that it is specific to a

given sample realization, while we wish to make more general conclusions. Hence, we

mostly interpret that the expectation in (4) is with respect to the joint distribution of the

sample y1, ..., yT and xT+h. This means thatMSE(ĝh(yT (p))) depends on the sample size

T , but not on a particular realization of observations.

Let ĝLh (yT (p))) and ĝ
N
h (yT (p))), respectively, denote an estimated prediction function

based on a linear and a nonlinear modeling approach. That is, ĝLh (yT (p))) is based on the

estimation of the linear model in (3), possibly after one has applied some intermediate

procedure to select what components from yt(p) (lags) are used in the model. The es-

timate ĝNh (yT (p))), in turn, may be based on a nonlinear parametric model for gh(yt(p))

and the underlying estimation procedure may include intermediate specification or lag

selection steps. The key question is which approach is better. That is, do we have

MSE(ĝLh (yT (p))) < MSE(ĝ
N
h (yT (p)))) or MSE(ĝ

N
h (yT (p)))) < MSE(ĝ

L
h (yT (p)))?

We often think that the optimal prediction function is nonlinear, which suggests that

if ĝNh is based on a sufficiently general nonlinear model then we haveMSE(ĝ
N
h (yT (p)))) <

MSE(ĝLh (yT (p))). Nevertheless, the majority of the past studies suggests that the linear

modeling approach is generally better, that is, most oftenMSE(ĝLh (yT (p))) < MSE(ĝ
N
h (yT (p))).

This widely shared finding may have several potential explanations.

First, the true optimal prediction function may be linear. This is something we cannot

know for certainty, but it is generally hard to believe this could be the case. Yet, it

4Here and in what follows, the notation ĝh(yT (p)) refers to an estimate of the prediction function

based on a sample of size T , while ĝh(yt(p)) may refer to the corresponding prediction at time point t.
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may often be that the best linear approximation is very close to the optimal nonlinear

prediction. If there is only a small difference, the linear approach is likely to win, because

with finite data one can estimate the best linear approximation more accurately than

various nonlinear models. Also, the relative difference in the MSE of an optimal nonlinear

model and the best linear approximation is necessarily smaller with weaker overall degree

of predictability. Due to stationarity and ergodicity, the degree of predictability decreases

eventually as the prediction horizon increases. Hence, as h becomes larger, the linear

model, in fact eventually a constant prediction, will yield the best prediction.

Second, it may often be that the applied competitive nonlinear parametric model does

not capture sufficiently accurately the optimal function g∗h(yt(p)). That is, the estimate

ĝNh (yT (p))) may be consistent for a function g
N
h (yt(p))) such that MSE(g

N
h (yt(p))) >

MMSE(h; p). Various nonlinear models do not nest the linear projection as a special

case. We may then have a situation where the nonlinear target function is less accurate

than the best linear approximation, that is, MSE(gNh (yt(p))) > LMSE(h; p). It is in

general very difficult to specify gNh (yt(p))) so that it nests the optimal function g
∗

h(yt(p)).

By assuming a more general parametric family for gNh (yt(p)) is going to result in more

estimation uncertainty so that we often have MSE(ĝNh (yT (p))) > MSE(ĝ
L
h (yT (p))) even

if MSE(gNh (yt(p))) < LMSE(h; p). Finally, it is not practically possible to apply all

existing nonlinear parametric models in any study.

The question that remains in the air is whether there exists a sufficiently general and

robust nonparametric estimation procedure that could find whether there is exploitable

nonlinear predictability beyond the linear prediction approach. So far, this question is

almost solely addressed by the ANN estimation strategy. In what follows, we examine

whether the so called boosting estimator from machine learning literature could do the

job.
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3 The Boosting Approach

3.1 Basics

The boosting estimator is implicitly estimating an additive prediction function

g
B(M)
h (yt(p)) =

M∑

m=1

bm(yt(p); θm) (5)

where bm(·; θm) are parametric functions. That is, the boosting estimator assumes that

the function gh(yt(p)) in (1) is of the form (5). For simplicity, we have dropped the horizon

index h from the component functions bm(·; θm) and from their number M , even if it is

natural to assume that these differ by horizon.

A rationale behind the model in (5) is that with large enoughM any conceivable func-

tion can be expressed arbitrarily accurately in this form. One could think of estimating

(5) as in the previous section, by minimizing the corresponding empirical mean squared

error with respect to the whole set of parameters θ1, ..., θM . But this would face all the

same potential problems as any conventional nonlinear parametric modeling approach.

In the boosting approach, the model (5) is “learned” from the available data gradually,

term by term. The underlying algorithm can be shown to conduct numerical optimization

in function space and is hence nonparametric. In the present setting, where the loss func-

tion (MSE(gh(yt(p)))) is quadratic, the population level target function is the conditional

mean g∗h(yt(p)), the optimal prediction function we are after.

The boosting algorithm is as follows. One specifies a simple parametric model b(yt(p); θ),

called the base learner. Then the estimate ĝ
B(M)
h for g

B(M)
h in (5) is obtained recursively

by

ĝ
B(m)
h (yt(p)) = ĝ

B(m−1)
h (yt(p)) + b(yt(p); θ̂m), m = 1, 2, ...,M (6)

where the fit b(yt(k); θ̂m) uses the estimate

θ̂m = argmin
θ∈Θ

∑

t

(um,t+h − b(yt(p); θ))
2 (7)

where um,t+h is the “residual series”

um+1,t+h = um,t+h − ĝ
B(m)
h (yt(p)) (8)
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The algorithm is initialized by setting u1,t+h = xt+h and solving (7) for m = 1. The

resulting fit is inserted into (6) to yield the first step fit ĝ
B(1)
h (yt(p)) = b(yt(p); θ̂1). To

obtain the second step fit ĝ
B(2)
h (yt(p)), the equation (8) is used to obtain u2,t+h, which is

then used in (7) so as to solve for θ̂2, and so on. The cycle is repeatedM times. The final

outcome can be written as

ĝ
B(M)
h (yt(p)) =

M∑

m=1

b(yt(p); θ̂m)

where b(yt(p); θ̂m) represents an estimate for b
m(yt(p); θm) in (5).

The accuracy of the fit ĝ
B(m)
h (yt(p)) improves, “boosts,” by each iteration stepm in the

sense that
∑

t

(
xt+h − ĝ

B(m+1)
h (yt(p))

)2
≤
∑

t

(
xt+h − ĝ

B(m)
h (yt(p))

)2
for all m ≥ 1. This

explains in part why the estimation method can potentially track the optimal function

g∗h even if it is very “complex” in form. Yet, the fact that the fit can only improve as

M grows implies that the method can “overfit” such that the fit predicts xt+h within the

estimation sample better than the optimal prediction function g∗h does. As ĝ
B(M)
h (yt(p))

deviates from g∗h, the true out-of-sample prediction accuracy is worse than in the case

of the optimal prediction function, MSE(ĝ
B(M)
h ) ≥ MSE(g∗h). This problem is basically

present in all methods including those discussed in the previous section. The success of

the boosting estimator rests on techniques that prevent it from overfitting.

For the boosting estimate not to overfit it is central that the number of boost M is

selected properly. Most commonly, this is handled by a cross-validation (CV) procedure.

In a k-fold CV, the available (estimation) data are divided into k portions of equal size.

One of the folds is put aside at the time and the remaining k− 1 folds are used to obtain

the boosting estimate for a givenM . For each of the k such boosting estimate, a measure

of out-of-sample accuracy is computed by using data on the single fold that was put aside.

The resulting k measures are averaged so as to obtain the final estimate for the out-of-

sample accuracy of the boosting estimator based on M iterations. This is run for a given

range of values of M , and the one yielding the best out-of-sample accuracy will serve as

the estimate for the optimal number of iterations.

The performance of the above described procedure for estimating the optimal M is

better, if the true out-of-sample accuracy of the boosting estimator changes only slowly as
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a function of M . This is sometimes called the “slow overfitting behavior” (see Bühlmann

and Hothorn (2007)). Under slow overfitting, it is more likely that the estimated M will

yield a prediction function that is close to the optimal one.

In general, slow overfitting is more likely when the base learner, b(y; θ), is “simple.”

Sufficient simplicity is usually attained by specifying the learner so that it belongs to a

narrow class of functions and that it applies a small number of predictors at an iteration.

As to a simple functional form, the commonly applied regression tree is a good option as

it amounts to a piecewise constant function with a chosen maximum number of discrete

jumps. A linear base model is also simple, but it has the potential disadvantage that the

final boosting estimate is also restricted to be linear.

Among nonlinear parametric functions, smoothing splines have turned out to be par-

ticularly well performing as they allow one to restrict the base learner to be smooth

of a given degree. Bühlmann and Yu (2003) find that a spline learner of a given de-

gree of smoothness (and with fixed smoothing parameter) can be boosted to adapt to a

higher-order smoothness and that the corresponding boosting estimate achieves the min-

imax optimal MSE rate of convergence. For a given degree of smoothness, the ordinary

smoothing spline also achieves the optimal rate, but the boosting approach has the ad-

vantage that the near optimal region of boosting iterations is wider than the set of near

optimal smoothing parameter of the ordinary smoothing spline estimator. We find the

spline learner particularly well suited for the present application, where it is natural to

assume that the underlying predictive effects are smooth rather than discrete.

In addition to having a simple functional form of the base learner, it is important that

it is kept parsimonious in the sense that it uses only a few predictors (in our case, a subset

of the lags yt, yt−1, ..., yt−p+1) at the time. In this regard the most efficient and in fact the

most common choice is the “componentwise” base learner, where only a single predictor

is applied at an iteration. In this case, in step (7) of the algorithm, the function b(y; θ)

is fitted for each of the lags yt+1−j at the time. The fit (and the corresponding lag) that

yields the smallest value of the criterion function in (7) is selected at an iteration m. The
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final boosting estimate can be written as

ĝ
B(M)
h (yt(p)) =

p∑

j=1

cj(yt−j+1; γ̂j) (9)

where

cj(yt+1−j; γ̂j) =
M∑

m=1

b(y; θ̂j,m)I(y = yt+1−j)

where I(y = yt+1−j) is one, if b(y; θ̂j,m) uses y = yt+1−j, and zero otherwise.

With componentwise base learners, the complexity of the model (9) increases in a

stagewise fashion. Depending on the number of iterations, some predictor variables may

be left out of the model altogether. Thus, the componentwise boosting allows the predic-

tors to be automatically selected from a larger set of potential predictor variables. The

marginal predictive content of any given predictor does not depend on the other predictors

in the model (9). In some cases, this feature may rule out the true optimal prediction

function. If this possibility is a concern, one can allow for “interactions” between the

predictors such that the learner b(y; θ) is a function of at most k (< p) predictors at

the time. One can also impose sparsity to b(y; θ) by using penalized or regularized least

squares estimation in place of the plain least squares (in (7)) or by applying a statistical

information criterion to select predictors at each boost iteration. To keep our analysis

simple enough, we only use the componentwise spline learners in this paper, and leave it

for later study to examine whether other base learners make a difference to our results.

Friedman (2001) recommends an additional regularization strategy where the base

learner is multiplied by a shrinkage parameter ν, 0 < ν ≤ 1, at each iteration step.

Bühlmann and Yu (2003) adapt this strategy and conclude that boosting with a low

value of ν is “safe” in the sense that the out-of-sample MSE increases very slowly if the

optimal number of iterations is exceeded. While it would be possible to find optimal

values for both M and ν, a more common strategy is to fix ν to a pre-chosen, “small

enough” value and optimize only the number of iterations. Friedman (2001) conducts an

empirical study of the performance of boosting with different values of ν and concludes

that values smaller than ν = 0.125 have diminishing returns in terms of the out-of-sample

predictive performance of the model. The optimized value of M is usually larger the

smaller the value of ν is.
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The base learner may also require other tuning parameters. Component-wise smooth-

ing splines used in this paper use a fixed number of knots and a smoothing parameter that

determines the degrees of freedom for the smoothing splines. Schmid and Hothorn (2008)

study the effect of these parameters on component-wise smoothing splines and conclude

that the optimal degree of freedom is between 3 and 4. They also note that the results

do not improve significantly, if the applied shrinkage parameter ν is smaller than 0.1. We

follow their recommendation and set the degrees of freedom for the splines to 3.5 and ν

to 0.1.

3.2 Direct and Two-stage Boosting

As pointed out in the introduction, we consider two strategies for obtaining the boosting

estimate in this paper. In the first of these, which we call the “direct boosting strategy,”

we apply the boosting estimator using xt+h as the dependent variable and the lags yt(p)

as the predictors. This procedure corresponds to the one used, e.g., in Hothorn et al.

(2012).

In theory, the direct boosting estimate, which we denote by ĝBh (yT (p)), should agree

with the linear autoregressive estimate, if the true optimal prediction function is linear.

However, with a finite sample, the estimated spline functions tend to be somewhat non-

linear even if their targets are not. Thus, we expect that in finite samples the direct

boosting method may yield less accurate forecasts than the linear estimate ĝLh (yT (p))

when the optimal prediction function is linear.

To keep up with the robustness of the linear estimation procedure, our second estima-

tion strategy conducts the estimation in two stages. We first estimate the linear prediction

model and then fine-tune it by applying the boosting estimator to its residuals. We call

this strategy “two-stage boosting.” Formally, the two-stage boosting estimate is

ĝBLh (yT (p)) = ĝ
L
h (yT (p)) + r̂

B
h (yT (p))

where ĝLh (yT (p)) is the linear estimate described above and r̂
B
h (yT (p)) is a boosting pre-

diction for its residuals.
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The two-stage boosting strategy resembles an estimation procedure proposed in Taieb

and Hyndman (2014). In the procedure of Taieb and Hyndman (2014), the first stage

involves estimating a conventional AR(p) model and iterating it so as to obtain ĝLh (yT (p))

for each h. Otherwise, the second stage part is the same, except that Taieb and Hyndman

(2014) apply a fixed number of boosting iterations to estimate the “residual” model, while

we estimate the optimal number of iterations for each h separately. It is well known

that the “direct” linear prediction used in the present paper and the “iterative” linear

prediction used in Taieb and Hyndman (2014) are asymptotically equal, while in finite

samples both approaches have their pros and cons. Hence, we have no reason to regard

either of the approaches better in the present application and leave the examination of this

question for later research. We only point out that our procedure is more straightforward

to apply in the present study.

The two-stage estimate ĝBLh (yT (p)) has the potential advantage over the direct estimate

ĝBh (yT (p)) in that it more certainly catches the optimal prediction when it is linear. When

the optimal prediction is linear, the linear prediction approach can capture it more effi-

ciently than the nonparametric boosting estimator. The resulting residuals are as “clean”

as possible so that the second stage boosting estimator should not make any difference to

the final prediction provided overfitting is properly controlled. On the other hand, when

the optimal prediction is nonlinear, the first stage estimation may result in noise that is a

“burden” for the second stage boosting. For example, the first stage estimator may have

a tendency to use more lags than is needed in the optimal prediction function. In this

situation, the second stage boosting may also use too many lags so that the final estimate

is more noisy. Hence, when the optimal prediction is nonlinear, the direct boosting should

have an advantage over the two stage estimator.

A naturally arising alternative for the two-stage boosting approach described above

would be a procedure, where the first stage estimation is conducted by the boosting esti-

mator using linear base learners. Such a boosting estimate in the first stage is necessarily

linear and hence has the capacity to capture the true optimal linear model in the same

fashion as the standard linear estimation approach. Whether this “double boosting strat-

egy” (using linear base learners in the first and splines in the second stage) is better than
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the two-stage estimator may depend on whether the linear boosting is better at estimating

linear effects than the conventional autoregressive approach. In our simulations, we find

that the boosting estimator with linear base learners is systematically less parsimonious

than the linear autoregressive estimation approach where the lag order was selected using

BIC. We also find that as a whole the “double boosting strategy” did not perform as well

as the two-stage procedure in terms of the forecasting MSE. Although our simulation ev-

idence is not a conclusive proof, in the following we proceed using the two-stage boosting

strategy. The results of the simulations with the double boosting approach are available

upon request.

4 Simulation Study

We conduct a simulation study to examine how the boosting prediction approach compares

with the conventional linear prediction approach and whether the direct or the two-stage

boosting approach has some advantage in specific settings. We start by describing the

simulation set-up.

4.1 The Set-up

We simulate independent samples (sequences of observations) from the q-th order Markov

process

yt = g(yt−1(q)) + εt (10)

where εt is a zero mean iid series. We report results based on the models shown in Table

1. These models are sufficient for demonstrating our main findings that we obtained from

a larger set of non-linear and linear models.

In the simulation experiment, we consider a situation where the h-period ahead predic-

tion is based on the estimation of the model (1). The choice of p, the number of applied

predictors, is taken as given. In the simulations, we let p = 12 so that the examined

methods could, at least in principle, find the best possible prediction model given by

xt+h = g
∗

h(yt(q)) + ut+h
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where xt+h = yt+h, g
∗

h(yt(q)) = E(xt+h|yt(q)) and ut+h = xt+h − g
∗

h(yt(q)). When the

regression function g in (10) is nonlinear, the corresponding optimal h-period ahead pre-

diction function g∗h(yt(q)) tends be complicated and more so with larger h. However, as

g and the distribution of εt are known to us, we can approximate g
∗

h(yt(q)) arbitrarily

accurately by numerical and simulation methods (see Tong (1990)).

We analyze and compare the performance of the linear estimation approach described

in Section 2 and the boosting approach described in Section 3. The linear approach yields

for each simulated sample the estimate ĝLh (yt(p)) of the linear prediction function g
+
h (yt(p))

(as defined after equation (3)). The boosting estimation approaches yield the estimates

ĝ
B(M)
h (yt(p)) and ĝ

BL(M)
h (yt(p)). We regard the optimal prediction function g

∗

h(yt(k)) as

their asymptotic target function.

For each estimation approach, we compute the (out-of-sample) coefficient of determi-

nation of the estimated prediction model. This measure is defined by

R2(ĝh(yT (p))) = 1−
MSE(ĝh(yT (p)))

var(xT+h)

where MSE(ĝh(yT (p))) is the (out-of-sample) MSE of the estimated prediction for xT+h

and var(xT+h) is the variance of xT+h. Clearly, we have R
2(ĝh(yT (p))) ≤ 1, but unlike for

a conventional R-squared, R2(ĝh(yT (p))) may be negative. The latter possibility arises,

because ĝh(yT (p)) may have poorer predictive performance than the optimal constant

prediction E(xT+h). We report negative values of R
2(ĝh(yT (p))) as zeros. Note that

R2(ĝh(yT (p))) depends on the sample size T .

A natural reference point for R2(ĝLh (yT (p))) is the coefficient of determination of the

linear projection model

R2(g+h (p)) = 1−
LMSE(p)

var(xt)

We have 0 ≤ R2(g+h (p)) ≤ 1 and we can interpret R2(g+h (p)) as the degree of linear

predictability at horizon h. Clearly, R2(ĝLh (yT (p))) ≤ R
2(g+h (p)).

As the measure of overall predictability we use the coefficient of determination of the

optimal prediction model

R2(g∗h(p)) = 1−
MSE(g∗h(yt(p)))

var(xt)

16



This measure is also within the interval [0, 1] and tells for a given horizon the max-

imum predictability that can be attained from the predictors yt(p). Given that the

boosting strategies have the capacity (at least asymptotically) to yield the optimal pre-

diction function g∗h(yt(p)), R
2(g∗h(p)) is a natural yard stick for R

2(ĝ
B(M)
h (yT (p))) and

R2(ĝ
BL(M)
h (yT (p))).

5

Finally, note that due to stationarity and ergodicity of the process, R2(g∗h(p)), R
2(g+h (p))→

0, as h → ∞. Despite this, we may have R2(g∗h1(p)) < R2(g∗h2(p)) or R
2(g+h1(p)) <

R2(g+h2(p)) for some horizons h1 < h2.

4.2 Results

We divide the simulation results into two sub-sections. In Section 4.2.1 we assess the

overall performance of the boosting estimation procedure and compare it to that of the

linear estimation approach. The comparisons are conducted in terms of the R2 measures.

In Section 4.2.2, we compare the performances of the two boosting strategies in terms of

their relative MSEs.

All of our reported simulations assume the sample size T = 500 that represents roughly

the length of the estimation samples in our empirical analysis.

4.2.1 Boosting vs. Linear Procedure

Figure 1 illustrates the performance of the boosting estimation procedure and the linear

estimation approach when the prediction is made for xt+h = yt+h and the sample size is

T = 500. The estimation procedures are allowed to use the twelve lags, yt, ..., yt−11 as

predictors (that is, p = 12). The lag order p̂ (p̂ ∈ {0, 1, ..., 12}) of the linear model is

selected by BIC. The 5-fold CV is applied to select the number of boosting iterations.

5Earlier we noted that when the optimal model is nonlinear using k < p lags its best linear approxi-

mation may use more than k lags. In this situation, one expects that the linear estimation part, the first

step, of the two-stage estimator ĝ
BL(M)
h

(yT (p)) selects too many lags and hence might not be consistent

for the optimal model. However, at least asymptotically, the second stage boosting estimation part of

the estimator ĝ
BL(M)
h

(yT (p)) has the capacity to adjust the estimated function so as to off-set the extra

lags resulting from the first step estimation.
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The illustration in Figure 1 is in terms of the value of the coefficient of determination of

the estimated prediction functions for horizons h = 1, 2, ..., 12. On the part of the boosting

estimator, the figure depicts only graphs for the direct boosting estimator, because the

corresponding results for the two stage boosting estimator are virtually the same in all

cases. That is, in these simulations, we can hardly see a difference in the R2’s of the two

boosting strategies. Nevertheless, when we compare the two boosting strategies by the

MSE ratio, we will find that there are some recognizable differences and we will analyze

these in the subsequent section.

The red (blue) line is R2 for the boosting (the linear) prediction procedure. The black

dotted line with star markers indicate the coefficient of determination of the optimal

prediction, or the degree of predictability of the process, at each horizon. This is the yard

stick against which we can assess the performance of the boosting prediction. The black

dotted line with plus markers indicate the coefficient of determination of the best linear

prediction based on all twelve lags. For the simulated models, this measure is virtually

the same as the one based on the whole past of the series (p =∞). Hence, the line with

plus markers tells what we can expect at best from a linear prediction procedure.

The results of panel (a) of Figure 1 are for a simple first order threshold autoregression.

The performance of the boosting prediction is pretty close to the optimal performance for

horizons 1 to 4. Also, the performance of the linear prediction is hardly distinguishable

from its reference point (the dotted line with plus markers) for the whole range of horizons.

When the horizon is longer than 4, the boosting and the linear methods perform equally

well. This is as expected, because the corresponding population level reference points are

very close to each other and the overall degree of predictability is low from horizon 5 on.

In the case of the second model (Figure 1, panel (b)), the two prediction approaches

attain well their reference points for horizons 1 and 2. However, both procedures have

increasing trouble in catching up with their maximal performances for longer prediction

horizons. For h ≥ 6, the performance of both predictions is worse than that of the optimal

constant prediction. In this example, the boosting estimator is better option for horizons

1 to 5, but the fact that both procedures go astray at longer horizons suggests that one

should somehow try to detect whether the estimated prediction function in hand is indeed
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any better than the simple constant prediction.

The process behind the results of panel (c) of Figure 1 is more predictable than the

previous cases. The performance of the boosting estimator is again not far from the

optimal performance at horizons 1 to 6 and it remains at least as good as the linear

prediction for longer horizons. In the case of this process, one loses nothing by using the

boosting estimator throughout.

The results of panels (d) and (e) are for models where the optimal prediction is a

nonlinear function of two predictors (lags). In panel (d), both estimators perform nearly

as accurately as their reference points. The advantage of the boosting estimator is consid-

erable for horizons 1 to 6. Thereafter, for h ≥ 7, the difference between the performances

of the two methods is less marked. The process behind panel (e) is again very predictably

with the optimal coefficient of determination being close to 1 at horizon 1 and 2. The

difference between the optimal and the best linear performance is also very large for all

horizons. The boosting estimator performs again better than the linear approach al-

though it gradually drops from its reference point level towards the performance of the

linear predictor.

Panel (f) in Figure 1 concerns a simple AR(3) process.6 As is expected, now the linear

prediction approach is better than the boosting estimator. The flexibility of the direct

boosting estimator causes it to overfit though in this case the method does not lose much

compared to the linear approach. When h ≥ 4, there is very little predictability and both

prediction approaches are worse than the optimal constant predictor.

Figure 2 shows results that correspond to those of Figure 1 with the exception that

the underlying predictions are for xt+h =
∑h

j=1 yt+j rather than for xt+h = yt+h. Hence,

in Figure 2, we can interpret that there is an underlying original time series Yt =
∑t

s=1 ys,

an I(1) process, and that the predictions are for the h period ahead change Yt+h − Yt =
∑h

j=1 yt+j. The results in Figure 2 are particularly interesting from the point of view of

our empirical application, where the majority of the original series are classified as I(1).

The profiles of the graphs of the R2 measures in Figures 1 and 2 are quite different

6We obtained the underlying coefficients from an AR(3) model that we specified and estimated for a

series in our empirical data set, “All Employees: Total Nonfarm.”
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in most cases. For example, for the threshold autoregression (panel (a) in the figures),

the degree of overall predictability is stronger, and the gap between the optimal and the

linear predictability is larger, for all horizons (h > 1) when the predicted outcome is the

h-period change (xt+h = Yt+h−Yt) of an underlying original series. A similar observation

applies to the nonlinear model of panel (c). There we also see that for the h-period change

the degree of predictability is stronger for horizons 2 to 4 than for horizon 1. The model

behind panel (b) is more extraordinary. In Figure 1, the degree of predictability dampens

geometrically, while in Figure 2 it declines with an oscillating pattern as a function of h.

For this case, the gap between the linear and the nonlinear (optimal) predictability is not

large for any horizon, while there is more overall predictability at longer horizons, when

the prediction is made for the h-period change. For the model of panel (d), the degree of

predictability is almost uniform over the horizons when the prediction is for the h-period

change. For panel (e), the wave-like pattern in Figure 2 is quite different compared to

the monotone decreasing pattern in Figure 1. Finally, for the linear model (panel (f))

the profile of the R2’s are fairly similar, though there is more to predict in terms of the

average difference for any horizon h > 1.

Overall the results of Figures 1 and 2 demonstrate that the boosting estimator can

beat the linear prediction approach very well in various types of settings where there is

nonlinear predictability beyond the best linear approximation. Sometimes the gain in

relative terms from using the boosting approach is considerable and sometimes it is minor

compared to the linear estimate. In general, the linear estimate is closer to its reference

point than the boosting estimator is to its reference point, that is, the optimal prediction.

A natural explanation for this difference in the two techniques is that as a very flexible

nonparametric modeling approach the boosting estimator can overfit more easily than the

linear estimator.

4.2.2 Direct vs. Two-stage Boosting Procedure

In this section, we compare the direct and the two-stage boosting strategies. We find it

most informative to conduct the comparison in terms of their MSEs in relation to the
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MSE of the linear method
MSE(ĝPh (yT (p)))

MSE(ĝLh (yT (p)))

where P ∈ {B,BL}. The results are presented in Tables 2 and 3. The tables also include

the MSE ratio between the optimal prediction and the one of the best linear approximation

(i.e., MMSE(h; p)/LMSE(h; p)).

The results in Tables 2 and 3 demonstrate a small but consistent difference in the

behavior of the two boosting strategies. The direct boosting procedure is able to model

a nonlinear prediction function slightly more accurately than the two-stage procedure.

On the other hand, the direct boosting produces a slightly worse estimate for a linear

prediction function. In cases, where the optimal prediction is linear or “close to linear” (i.e.

the ratio MMSE(h; p)/LMSE(h; p) is almost one), both boosting procedures perform

slightly worse on average than the pure linear prediction procedure.

The following factors seem to drive this result. First, in a close examination of the

estimated models, we find that the direct boosting procedure is more parsimonious (in

terms of the number of predictors chosen for the model) than the other methods, when the

optimal prediction function is non-linear, but tends to overfit, when the optimal model is

linear. Second, in the case of the direct boosting strategy, the estimated spline functions

tend to be non-linear even if the underlying population level target function is linear. On

the other hand, when the optimal prediction is linear, the first stage of the two-stage

boosting strategy tends to capture the most of it and the second stage boosting part does

not usually alter the first stage estimation result much.

In summary, the choice between the two boosting strategies boils down to a trade-off

between flexibility and robustness. On the one hand, the two-stage approach appears to be

more resistant to overfitting when the true optimal prediction is linear or when the degree

of predictability is low (the optimal R2 is close to zero). On the other hand, the direct

boosting strategy models non-linear prediction functions somewhat more accurately than

the two-stage procedure. After all, the two-stage procedure starts with a wrong linear

model and tries to fix it by adding a non-linear model on the top. In what follows, we

examine the relative importance of these trade-offs in the forecasting of macroeconomic

variables.
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5 Empirical Analysis

In this section, we analyze how well the boosting and the linear methods predict the series

of the FRED-MD data set.

5.1 Procedures

The empirical prediction problem is similar to what we have studied above. For a given

monthly series Yt from the FRED-MD data set we wish to estimate the optimal prediction

function for horizons h = 1, ..., 12. We treat the original time series in the same way as in

the analysis of McCracken and Ng (2016). Hence, Yt is most often the logarithmic form of

an original time series in the data set. Moreover, based on the evidence of McCracken and

Ng (2016), we regard Yt as either I(0), I(1) or I(2) process and accordingly formulate the

h-period ahead prediction model (with response xt+h and predictors yt, yt−1, ..., yt−p+1) as

was described in Section 2.

For the present analysis, we use a vintage of the FRED-MD data set that was available

in early 2018. The data set contains 128 series and all of these are named in the data

appendix of McCracken and Ng (2016).7 Concerning each series in the data set, we

apply observations from the first month (typically January 1959) until December 2016

(available for all series in the data set). The aforementioned data appendix indicates the

first observation month for each series as well as the applied transformation (whether the

original series is used as such or in logarithmic form) and whether the series is regarded

as I(0), I(1) or I(2).

We compare the three methods by a “simulated” out-of-sample (SOOS) analysis (sim-

ilarly as in many previous studies, e.g., Stock and Watson 1999). Denote by T1 (T2) the

number of observations at the first (the last) month at which the simulated out-of-sample

prediction is made. In our baseline analysis, the corresponding months are December 1998

(T1) and December 2015 (T2). For most series, T1 = 480 and T2 = 684. We interpret that

our SOOS results are representative for a situation where the sample size, T , is roughly

7We note that six of the series in the original FRED-MD data set are not in the present vintage of

the data set.

22



the average of T1 and T2, or casually, T = 500. With this idea in mind, we denote the

corresponding estimates by ĝBh (yT (p)), ĝ
BL
h (yT (p)) and ĝ

L
h (yT (p)).

In the SOOS analysis, we estimate MSE(ĝPh (yT (p))) = E(xT+h − ĝ
P
h (yT (p)))

2 for

P ∈ {B,LB,L} by the simulated out-of-sample MSEs

M̂SE(ĝPh (yT (p))) =
1

T2 − T1

T2∑

t=T1

(
xt+h − ĝ

P
h (yt(p))

)2

Here, the estimates ĝPh (yt(p)) are generated recursively in the standard fashion with the

exception that we update the estimation only once per year. Hence, the first estimation

is run using observations until T1 and the corresponding estimates are applied to make

predictions at periods t = T1, T1+1, ..., T1+12 for each h = 1, ..., 12. The second estimation

round is made using a sample that ends at period T1 + 12, and so on.

As in the simulation study, we find it informative to consider the empirical (or simu-

lated) out-of-sample coefficient of determination

R̂2(ĝPh (yT (p))) = 1−
M̂SE(ĝPh (yT (p)))

v̂ar(xT+h)

where v̂ar(xT+h) is the sample variance based on the out-of-sample observations xt+h, t =

T1, ..., T2. Again, R̂
2(ĝPh (yT (p))) is regarded as an estimate for the population level coun-

terpart R2(ĝPh (yT (p))), where M̂SE(ĝ
P
h (yT (p))) and v̂ar(xT+h), respectively, is replaced

with MSE(ĝPh (yT (p))) and var(xT+h).

Finally, to compare the methods in relative terms we use the empirical MSE ratio

M̂SE(ĝP1h (yT (p)))

M̂SE(ĝP2h (yT (p)))
(11)

where P1, P2 ∈ {B,LB,L}, P1 6= P2 indicate the compared methods (e.g., P1 = B,

P2 = L). When the ratio in (11) is less than 1, the procedure P1 is estimated to be more

accurate than the procedure P2.
8

8Whether the difference is statistically significant is not addressed here. Using e.g. the Diebold-

Mariano test for testing between the predictive accuracy of the forecasts is not valid here, as the forecasting

models are likely (though not necessarily) nested.
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5.2 Main Results

We start by considering how the three procedures compare in terms of their empirical out-

of-sample R2’s, or R̂2’s, for all 12 horizons. Table 4 presents the average of the R̂2’s for all

128 series (panel a), for series where the boosting method is more accurate (panel b) and

for ones where the linear approach is more accurate (panel c). Within each panel separate

results are given for the subsets where the maximum of R̂2 over the three methods is at

least 0.1. This is motivated by the fact that the optimal prediction is necessarily close to

linear when there is little predictability (i.e., when the true out-of-sample R-squared is

small).

The general observation from panel (a) of Table 4 is that on average the linear and

the two stage boosting procedures perform similarly, while the direct boosting procedure

is clearly inferior to both. This result holds whether the averages are for all 128 series or

for the subset of series where we require that R̂2 is at least 0.1 for one of the methods.

The observation is largely explained by the fact that in many cases where the linear

approximation seems to yield sufficient accuracy the direct boosting procedure tends to

overfit, while the two-stage procedure does not.

The results in panel (b) of Table 4 show how much more the boosting method is more

accurate when it is more accurate than the linear procedure. An interesting observation is

that in these cases the two-stage boosting procedure is on average more accurate than the

direct boosting procedure with the exception of the one step ahead prediction h = 1 where

the two methods are essentially equally accurate. In relative terms, the advantage of the

two-stage boosting over the linear procedure is quite marked for horizons h > 1. The

overall picture is quite similar in the baseline case and in the subset where the maximum

of R̂2 over the three methods is at least 0.1.

The results in panel (c) of Table 4 show how much more the conventional linear pro-

cedure is more accurate when it is more accurate than the boosting procedure. Note that

for horizons from 1 to 7 the boosting method yields on average more accurate predictions

than the linear procedure. Moreover, when the linear prediction is more accurate its rel-

ative advantage over the boosting method is not as large as the corresponding relative
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gain of the boosting method (shown in panel (b)). However, for horizons longer than 7

the gain of the linear procedure over the boosting method is about as marked as the gain

of the boosting method at its best cases (in panel (b)).

In summary, the results of Table 4 indicate that the two-stage boosting method is

the preferred method among the three procedures for horizons from 1 to 7, while for

longer horizons it is more up to the series whether the two-stage or the linear procedure

is better. That is, for horizons from 1 to 7, the two-stage boosting method seems fairly

robust in that it is more accurate for most series and when it is less accurate than the

linear procedure it is so only slightly. It seems that the two-stage boosting method can

somehow utilize the best parts of the boosting and the linear procedure. For horizons

longer than 7, there are more cases where the linear procedure is more accurate than the

two-stage procedure.

Overall, we find that there are 14 (28) series where the two-stage boosting procedure

is more accurate than the linear forecast for all 12 (for at least 10) forecasting horizons.

Conversely, there are 0 (10) series for which the linear method is more accurate for all 12

(for at least 10) horizons. These observations support the view that for a given macroeco-

nomic series it is more likely that the two-stage boosting procedure yields more accurate

predictions than the linear procedure. A general conclusion is also that it is beneficial to

apply the boosting prediction procedure to 30-40 percent of the U.S. macroeconomic se-

ries that have at least some predictability in their own history. For the linear procedure,

the corresponding percentage is between 10 and 25. For the rest of the series the two

methods are essentially equally accurate.

Figures 3 and 4 plot R̂2(ĝLh (yT (p))), R̂
2(ĝBh (yT (p))), and R̂

2(ĝBLh (yT (p))) over h =

1, ..., 12 for 12 series from the FRED-MD data base. The series in the figures represent

cases, where at least one of the boosting methods performs better than the linear proce-

dure for at least 10 horizons. Interestingly, the graphs in the figures are somewhat similar

to those that we obtained in our simulations (see Figures 1 and 2). For these series, there

is no clear difference between the boosting strategies. An exception is the series in Figure

4(e) for which the performance of the two-stage procedure start to decline when h > 3.

This suggests that the direct boosting can sometimes capture the underlying nonlinear-
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ity better than the two-stage procedure. In 59% of the cases where the direct boosting

forecast is more accurate than the linear one, it is also more accurate than the two-stage

boosting forecast. However, the direct boosting forecast is more accurate than the linear

forecast only in 37% of all cases. Thus, to safely reap the potential benefit from the direct

boosting strategy, we should have a testing procedure to assess in advance whether its

out-of-sample performance is indeed superior to that of the linear method.

5.3 The Impact of Financial Crisis

We are aware that in the present sample the U.S. economy experienced a very turbulent

period at and after the financial crisis in 2008. It is quite likely that a large share (if not

all) of the series in the FRED-MD data set are subject to some structural breaks during

these times and the return to “normal times” may have taken a long time depending

on the series. To see whether such prolonged, but perhaps temporary, deviations from

normal times make a difference to our conclusions we present in Table 5 results that are

as in Table 4 except that the out-of-sample period is restricted to the pre-crisis years

1999-2007 (that is, now the last estimation sample ends in December 2006 so that for

most series T2 = 564).

The results of Table 5 are generally similar to those in Table 4 except that now the

two-stage boosting method is on average more accurate at all horizons (panel a). Among

cases, where the two stage boosting is more accurate than the linear procedure (panel

b), it is more so than it is in Table 4. Moreover, for horizons from 1 to 11 the two-stage

boosting predictions are most accurate for the majority of the series. For horizon 1 (7)

[11], the boosting based prediction is more accurate for 28 (43) [40] series and the linear

method is more accurate for 9 (17) [20] series. Overall, the results of Table 5 are even

more in favor of the two-stage boosting method than the results of Table 4.

For the pre-crisis out-of-sample period we also find that there are 30 series for which

the two-stage boosting procedure is more accurate than the linear procedure for at least

10 horizons, while in the case of the linear procedure corresponding count is only 4. These

observations give additional support to the view that the two-stage boosting procedure is
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the preferred method for predicting the majority of macroeconomic series at least in the

absence of major structural breaks.

The above findings suggest that the boosting method may lose at least a part of its

relative advantage when the underlying series is subject to a temporary break. In a closer

examination, we find a natural mechanism through which the boosting based predictions

tend to fail during the period of the 2008 financial crisis. The key observation is that as

a result of the financial crisis some series have taken on values that have hardly never

realized in the past. As these outliers are not in the “training data,” the boosting method

has to extrapolate them. When the boosting procedure extrapolates the estimates of the

underlying nonlinear spline functions the resulting prediction tends to “overshoot” in that

its value is even further away from the historical area of the variation of the series. The

conventional linear method is more moderate in this type of occasions and hence does not

overshoot so easily.

To examine our conjecture on the spline extrapolation issue, we device “hybrid fore-

casts” that are equal to the boosting forecast (either direct or two-stage) with the excep-

tion that we replace their predictions with the conventional linear forecast at every point

where spline extrapolation would be needed. In the case of the two-stage procedure this

means that the second stage refinement is skipped when it requires extrapolation. The

results using the hybrid versions of the boosting procedures are presented in Table 6 for

the whole out-of-sample period 1999-2016.

When we compare the results in Tables 4 and 6 we make the following main observa-

tions. First, in Table 6, there are more cases where the boosting method is more accurate

than the conventional linear procedure. Secondly, the differences in accuracy between the

two boosting strategies are smaller in Table 6 than in Table 4. Finally, in cases where the

linear procedure is better than the two boosting procedures it is much less so in Table 6.

In particular, the hybrid two-stage boosting procedure is on average at least as (or only

slightly less) accurate as (than) the conventional linear procedure in Table 6. We also

find that there are only 3 series for which the pure linear procedure is the most accurate

for at least 10 horizons. On the other hand, even in these cases, the hybrid two-stage

procedure is essentially equally accurate. Hence, overall, based on the results of Table 6,
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we may conclude that the hybrid two-stage boosting procedure is the most robust method

for predicting the series in the FRED-MD data set.

A comparison of the individual series where two-stage boosting is more accurate among

different subsamples reveals an important fact. If one looks at the list of individual series

where the two-stage boosting method is more accurate for the majority of forecasting

horizons, the pre-crisis list contains about 75% of the series in the full sample list. Or

alternatively, for about 60% of the series where the boosting forecast is more accurate

for the post-crisis period (2009-2015), the same is true for the pre-crisis period as well.

This suggests that nonlinear predictability is in some cases an inherent feature of the time

series that is preserved over a major shock.

5.4 Category-specific Findings

It may also be of interest to drill down deeper and look at the average empirical R2 val-

ues by variable category. The average per-category R̂2 values for the “hybrid two-stage

boosting” method are presented in Table 7. It appears that the forecasting accuracy im-

provement from boosting is concentrated on designated variable categories. On average,

the variables in the Output and Income category benefit the most. Labor Market variables

benefit from boosting especially in the short-term forecasts (h = 1, ..., 6), while there is

also some improvement in the Orders and Inventories and Stock Market categories for

the longest forecasting horizons. In Output and Income and Orders and Inventories cate-

gories many variables are just weakly predictable by the linear procedure, while boosting

improves the accuracy significantly. Similar cases can also be found among Labor Market

variables. Figures 3 and 4 illustrate some examples in more detail.

The variables in Interest and Exchange Rates category are hardly predictable by their

own history, but interest rate spreads can be predicted rather well using the linear method.

For some of the spread variables the boosting approach improves the forecast by 10-20%.

Also in Money and Credit category, some individual variables benefit significantly from

the use of boosting, but on average, there is no clear improvement.

The housing variables in Consumption and Orders category suffer the most from the
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aforementioned spline extrapolation issue. If we look at the pre-2007 forecasts, the boost-

ing estimators can reduce the forecasting MSE up to 25% for the longer forecasting hori-

zons. After 2008, the boosted forecasts are inferior to the linear forecast, while the MSEs

of the hybrid forecasts are equal to that of the linear forecast.

Grouping the variables by the order of integration of the original variable, the I(1) se-

ries usually benefit most from the boosting approach, and this observation applies to both

boosting strategies. On the contrary, I(2) series (most of which are in Prices category)

seem not to benefit from boosting and the direct boosting approach produces forecasts

that are less accurate than the linear forecasts.

6 Conclusion

We have applied the boosting estimation technique to examine whether macroeconomic

time series have exploitable nonlinear predictability beyond what is obtained by using

a conventional linear prediction method. We motivated the boosting approach by the

following points. The method is nonparametric and hence not restricted to a specific

parametric model family. It has been shown to have advantages over alternative non-

parametric techniques and it has proved to be superior in various previous studies in the

machine learning literature. It is handy and reliable to use in practice.

We first conducted a simulation study to get an initial assessment of the performance

of the boosting method and how it compares with the conventional linear method. We

attempted to design the simulation set-up so that it could resemble our empirical setting.

The simulations demonstrated that the boosting method indeed has capacity to exploit

nonlinear predictability when it is present. On the other hand, we also learned that for

the boosting method to be useful it is often required that the true optimal prediction

model is clearly more accurate than its best linear approximation.

Our empirical analysis concerned 128 monthly macroeconomic time series available in

the FRED-MD data set, originally provided and introduced in McCracken and Ng (2016).

We showed that for a significant share of variables in this data set the boosting estima-

tion method can improve the accuracy of forecasts over a conventional linear prediction
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approach. We also identified variable categories where nonlinear modeling is likely to

produce the largest benefits. An issue is however that despite the boosting estimator is

known of its resistance to overfitting this cannot be avoided with certainty. As a result,

there are series for which the “pure” or “direct” boosting prediction is inferior to the one

based on the linear method. As there is currently no reliable method for diagnosing when

this happens, we considered a “two-stage” boosting procedure, where the conventional

linear prediction model is fine-tuned by the boosting technique.

The two-stage boosting method turned out to have the best out-of-sample performance

in our empirical analysis. We found that it is almost always at least as accurate as the

direct boosting procedure, while it is rarely less accurate than the linear method. When

the two-stage boosting method is combined with a conventional procedure for handling

outliers, it is virtually never inferior to the linear method when we consider 1 to 12 month

ahead predictions for the variables in the FRED data set. We are willing to conclude

that the most robust approach to exploiting nonlinear predictability in the forecasting of

macroeconomic variables is to apply a flexible nonlinear procedure not as such, but as a

device to fine-tune the linear autoregressive model.

Our results suggest that while the direct boosting procedure is more sensitive to over-

fitting it can sometimes reap nonlinear predictability (in excess of the linear model) better

than the two-stage procedure. Hence, an important topic for future research is to develop

a reliable method for testing whether the direct boosting has better out-of-sample accu-

racy than the linear method. Other interesting topics for further research include the use

of additional predictor variables and more flexible base learners allowing for interactions

between the predictors. It would naturally also be of interest to compare the accuracy of

the boosting forecasts with conventional nonlinear parametric models and with alternative

nonparametric methods such as the popular artificial neural networks technique.
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Table 1. Simulated Models

(a) yt = −0.5yt−1I(yt−1 ≤ 0.5) + 0.9yt−1I(yt−1 > 0.5) + 0.5εt, εt ∼ NID(0, 0.25)

(b) yt = 0.4
5−y2

t−1

1+y2
t−1

+ εt, εt ∼ NID(0, 0.25)

(c) yt = (0.5 + 2 exp(−y
2
t−1))yt−1 + εt, εt ∼ NID(0, 0.25)

(d) yt = (0.4− 2 exp(−50y
2
t−6))yt−6 + (0.5− 0.5 exp(−50y

2
t−10))yt−10 + εt, εt ∼ NID(0, 0.01)

(e) yt = −0.4
3−y2

t−1

1+y2
t−1

+ 0.63−(yt−2−0.5)
3

1+(yt−2−0.5)4
+ εt, εt ∼ NID(0, 0.01)

(f) yt = 0.21yt−1 + 0.35yt−2 + 0.17yt−3 + εt, εt ∼ NID(0, 0.01)

Notes: NID(0, σ2) indicates an iid normal series with mean zero and variance σ2.
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Table 2: Simulated MSE for the Direct and the Two-stage Boosting Strategies in Ratio to the Linear Method

Model Prediction h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 7 h = 8 h = 9 h = 10 h = 11 h = 12

Optimal 68.0 90.2 93.4 95.5 96.5 98.7 98.3 98.3 99.3 99.4 98.4 99.3
(a) Direct 74.3 91.5 95.7 98.5 100.0 101.0 101.4 101.6 101.7 101.7 101.6 101.8

Two-stage 75.1 91.9 95.7 98.3 99.7 100.6 101.1 101.5 101.6 101.7 101.6 101.8

Optimal 72.6 85.7 92.3 95.5 96.9 98.4 99.0 99.2 99.2 99.9 100.0 100.0
(b) Direct 74.1 87.0 94.2 97.4 99.2 100.1 100.4 100.4 100.4 100.4 100.5 100.5

Two-stage 74.5 87.3 94.4 97.7 99.4 100.1 100.4 100.5 100.6 100.6 100.7 100.7

Optimal 68.8 77.4 81.3 85.2 87.6 88.6 89.3 91.1 91.7 93.2 93.8 93.4
(c) Direct 71.2 81.6 85.9 89.1 91.4 93.4 95.0 95.9 96.9 97.6 98.3 98.8

Two-stage 74.0 83.8 88.0 91.1 93.1 94.8 96.0 96.8 97.5 98.0 98.6 99.0

Optimal 70.9 70.9 70.9 70.9 70.9 70.9 96.5 96.5 96.5 96.5 93.9 93.9
(d) Direct 73.4 73.8 74.2 74.4 74.3 74.4 99.6 99.8 100.0 100.2 96.5 96.5

Two-stage 75.0 75.2 75.3 75.4 75.1 75.0 99.9 99.9 100.0 100.0 96.6 96.6

Optimal 11.4 16.5 26.5 42.6 53.3 61.7 62.9 68.6 75.1 77.8 80.2 83.8
(e) Direct 14.6 25.4 56.7 62.8 66.7 79.3 77.6 78.6 86.2 87.8 87.6 92.9

Two-stage 15.0 27.1 57.5 63.9 67.5 79.4 78.0 80.0 86.7 88.0 88.1 93.1

Optimal 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
(f) Direct 101.9 102.2 102.0 102.1 101.8 101.5 101.5 101.2 101.0 100.9 100.9 100.9

Two-stage 100.2 100.2 100.4 100.5 100.5 100.6 100.6 100.6 100.6 100.7 100.8 100.9

Notes: “Optimal” refers to the population level ratioMMSE(h; p)/LMSE(h; p), while “Direct” and “Two-stage,” respec-
tively, refers to the simulated ratioMSE(ĝBh (yT (p)))/MSE(ĝ

L
h (yT (p))) andMSE(ĝ

BL
h (yT (p)))/MSE(ĝ

L
h (yT (p))) (see the

text). The simulated models, as indicated by the letters in the first column, are shown in Table 1. The predictions are
for xT+h = yT+h and the sampe size T = 500.
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Table 3. Simulated MSE for the Direct and the Two-stage Boosting Strategies in Ratio to the Linear Method

Process Prediction h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 7 h = 8 h = 9 h = 10 h = 11 h = 12

Optimal 68.1 76.4 81.0 84.6 86.8 88.9 90.6 91.7 92.5 93.0 93.5 94.5
(a) Direct 74.2 79.5 83.9 87.2 89.8 91.8 93.4 94.8 95.9 96.8 97.6 98.2

Two-stage 75.0 80.7 84.9 88.1 90.4 92.3 93.7 95.0 96.1 96.9 97.5 98.3

Optimal 72.8 99.0 89.8 98.8 94.9 99.7 96.8 98.9 97.8 98.8 98.7 99.2
(b) Direct 74.4 100.3 92.1 100.3 96.8 100.2 98.7 100.3 99.5 100.4 100.0 100.4

Two-stage 74.8 100.0 92.2 100.1 97.0 100.2 98.9 100.2 99.7 100.3 100.1 100.4

Optimal 68.6 63.6 62.4 64.6 67.5 69.3 71.2 73.4 76.0 76.9 78.1 80.1
(c) Direct 70.6 66.1 67.0 69.5 72.2 74.7 77.1 79.2 81.1 82.9 84.3 85.6

Two-stage 73.3 69.0 70.0 72.4 74.8 77.3 79.5 81.5 83.4 84.9 86.4 87.6

Optimal 71.1 71.1 71.3 71.4 69.4 68.2 71.2 78.7 84.6 88.6 86.3 86.0
(d) Direct 72.8 73.7 74.9 75.9 74.2 73.4 75.4 76.9 78.1 79.1 80.6 81.6

Two-stage 74.4 74.6 75.3 75.6 73.7 72.7 75.0 76.7 78.1 79.3 80.8 81.9

Optimal 11.3 16.3 22.1 36.2 49.4 64.4 70.8 64.9 64.0 68.4 75.1 80.2
(e) Direct 14.8 21.2 35.0 56.0 67.1 77.9 82.3 71.9 70.8 79.1 85.5 90.2

Two-stage 15.2 24.2 36.2 56.0 67.2 78.1 83.1 73.0 71.4 79.0 85.6 90.4

Optimal 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
(f) Direct 102.0 102.1 102.5 102.6 102.9 103.1 103.2 103.4 103.5 103.5 103.6 103.6

Two-stage 100.2 100.3 100.4 100.6 100.8 101.0 101.3 101.5 101.5 101.6 101.6 101.8

Notes: The notes of Table 2 apply with the exception that the predictions are for xT+h =
∑h
j=1 yT+j .
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Table 4: Average Empirical R2 for Out-of-sample Forecasts for Period 1999-2016

R̂2min Method h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 7 h = 8 h = 9 h = 10 h = 11 h = 12

(a) All cases
0.0 Linear 0.33 0.37 0.39 0.40 0.40 0.40 0.39 0.39 0.38 0.37 0.36 0.36

Direct Boosting 0.32 0.35 0.37 0.37 0.37 0.37 0.36 0.35 0.34 0.33 0.31 0.30
Two-stage Boosting 0.34 0.38 0.40 0.41 0.41 0.41 0.40 0.39 0.38 0.37 0.36 0.35
N 128 128 128 128 128 128 128 128 128 128 128 128

0.1 Linear 0.43 0.48 0.51 0.52 0.51 0.53 0.52 0.52 0.52 0.50 0.49 0.48
Direct Boosting 0.42 0.45 0.48 0.48 0.48 0.49 0.47 0.47 0.46 0.44 0.42 0.40
Two-stage Boosting 0.44 0.49 0.52 0.53 0.52 0.54 0.53 0.53 0.52 0.50 0.49 0.47
N 95 98 97 98 99 95 96 94 93 95 94 94

(b) Cases where boosting is more accurate
0.0 Linear 0.31 0.32 0.32 0.32 0.34 0.32 0.34 0.31 0.30 0.30 0.28 0.29

Direct Boosting 0.33 0.34 0.34 0.33 0.36 0.34 0.36 0.34 0.31 0.31 0.30 0.31
Two-stage Boosting 0.33 0.34 0.35 0.35 0.37 0.35 0.37 0.35 0.34 0.34 0.33 0.34
N 77 70 65 70 69 72 71 62 61 65 61 61

0.1 Linear 0.40 0.42 0.41 0.41 0.40 0.44 0.43 0.39 0.38 0.37 0.33 0.34
Direct Boosting 0.41 0.44 0.43 0.41 0.43 0.46 0.44 0.43 0.40 0.38 0.35 0.36
Two-stage Boosting 0.41 0.45 0.44 0.44 0.44 0.48 0.47 0.44 0.42 0.42 0.38 0.38
N 60 52 51 55 57 52 56 49 48 52 52 53

(c) Cases where linear procedure is more accurate
0.0 Linear 0.35 0.44 0.46 0.49 0.47 0.49 0.46 0.46 0.46 0.44 0.44 0.41

Direct Boosting 0.31 0.38 0.39 0.42 0.38 0.40 0.36 0.35 0.35 0.34 0.32 0.28
Two-stage Boosting 0.35 0.43 0.45 0.47 0.45 0.47 0.43 0.43 0.43 0.41 0.39 0.36
N 51 58 63 58 59 56 57 66 67 63 67 67

0.1 AR(BIC) 0.27 0.34 0.38 0.39 0.39 0.37 0.37 0.38 0.38 0.37 0.39 0.37
Direct Boosting 0.24 0.30 0.33 0.34 0.32 0.30 0.29 0.30 0.30 0.28 0.28 0.26
Two-stage Boosting 0.27 0.34 0.37 0.38 0.38 0.36 0.35 0.36 0.36 0.34 0.35 0.33
N 35 45 46 44 43 42 38 44 45 43 44 42

Notes: N is the number of series in the FRED data set that meet (for given horizon h) the criterion R̂2 ≥ R̂2min for at
least one of the three forecasting methods.
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Table 5: Average Empirical R2 for Out-of-sample Forecasts for Period 1999-2007

R̂2min Method h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 7 h = 8 h = 9 h = 10 h = 11 h = 12

(a) All cases
0.0 Linear 0.32 0.37 0.39 0.39 0.39 0.38 0.37 0.37 0.35 0.34 0.32 0.31

Direct Boosting 0.31 0.35 0.37 0.37 0.38 0.37 0.36 0.35 0.34 0.32 0.30 0.29
Two-stage Boosting 0.33 0.38 0.41 0.41 0.41 0.41 0.39 0.38 0.37 0.36 0.34 0.33
N 128 128 128 128 128 128 128 128 128 128 128 128

0.1 Linear 0.44 0.50 0.55 0.52 0.53 0.52 0.50 0.50 0.49 0.47 0.46 0.45
Direct Boosting 0.41 0.47 0.51 0.49 0.50 0.50 0.49 0.48 0.47 0.45 0.43 0.42
Two-stage Boosting 0.45 0.52 0.57 0.55 0.56 0.55 0.53 0.53 0.51 0.50 0.49 0.47
N 92 94 90 96 94 93 94 92 92 91 89 87

(b) Cases where boosting is more accurate
0.0 Linear 0.33 0.37 0.38 0.35 0.34 0.32 0.32 0.33 0.27 0.27 0.23 0.23

Direct Boosting 0.33 0.38 0.40 0.38 0.39 0.36 0.37 0.37 0.32 0.32 0.28 0.29
Two-stage Boosting 0.34 0.39 0.41 0.38 0.39 0.36 0.37 0.38 0.32 0.33 0.30 0.30
N 88 84 77 73 68 72 70 72 68 69 65 58

0.1 Linear 0.45 0.48 0.49 0.42 0.43 0.42 0.39 0.41 0.36 0.35 0.31 0.29
Direct Boosting 0.45 0.48 0.51 0.46 0.49 0.47 0.44 0.45 0.42 0.40 0.37 0.36
Two-stage Boosting 0.47 0.50 0.52 0.46 0.49 0.48 0.45 0.47 0.42 0.42 0.39 0.37
N 63 65 59 60 53 54 57 57 51 53 48 45

(c) Cases where linear procedure is more accurate
0.0 Linear 0.30 0.37 0.40 0.46 0.45 0.47 0.44 0.41 0.45 0.42 0.42 0.37

Direct Boosting 0.24 0.30 0.32 0.36 0.36 0.38 0.35 0.33 0.36 0.33 0.33 0.29
Two-stage Boosting 0.30 0.37 0.40 0.45 0.44 0.46 0.42 0.40 0.43 0.39 0.39 0.36
N 40 44 51 55 60 56 58 56 60 59 63 70

0.1 AR(BIC) 0.19 0.26 0.30 0.37 0.36 0.36 0.36 0.33 0.35 0.33 0.33 0.32
Direct Boosting 0.16 0.22 0.25 0.29 0.30 0.29 0.30 0.27 0.29 0.27 0.26 0.25
Two-stage Boosting 0.19 0.26 0.30 0.37 0.36 0.35 0.35 0.32 0.34 0.31 0.32 0.31
N 29 29 31 36 41 39 37 35 41 38 41 42

Notes: See Table 4.
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Table 6: Average Empirical R2 for “Hybrid” Out-of-sample Forecasts for Period 1999-2016

R̂2min Method h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 7 h = 8 h = 9 h = 10 h = 11 h = 12

(a) All cases
0.0 AR(BIC) 0.33 0.37 0.39 0.40 0.40 0.40 0.39 0.39 0.38 0.37 0.36 0.36

Direct Boosting 0.33 0.37 0.38 0.39 0.39 0.39 0.38 0.37 0.36 0.35 0.34 0.33
Two-stage Boosting 0.34 0.38 0.40 0.41 0.41 0.41 0.41 0.40 0.39 0.39 0.38 0.37
N 128 128 128 128 128 128 128 128 128 128 128 128

0.1 AR(BIC) 0.43 0.49 0.51 0.52 0.52 0.53 0.53 0.53 0.52 0.50 0.49 0.47
Direct Boosting 0.43 0.48 0.50 0.51 0.50 0.52 0.51 0.51 0.50 0.48 0.46 0.44
Two-stage Boosting 0.44 0.51 0.53 0.54 0.53 0.55 0.54 0.55 0.54 0.52 0.50 0.49
N 95 95 96 97 98 94 95 93 93 94 95 95

(b) Cases where boosting is more accurate
0.0 AR(BIC) 0.35 0.34 0.37 0.35 0.36 0.33 0.34 0.32 0.30 0.33 0.32 0.33

Direct Boosting 0.37 0.36 0.39 0.36 0.38 0.35 0.36 0.35 0.32 0.35 0.34 0.34
Two-stage Boosting 0.37 0.37 0.40 0.37 0.39 0.36 0.38 0.36 0.34 0.37 0.36 0.37
N 83 79 77 76 73 74 73 63 65 68 63 62

0.1 AR(BIC) 0.44 0.46 0.46 0.44 0.43 0.43 0.43 0.40 0.40 0.41 0.37 0.36
Direct Boosting 0.46 0.47 0.48 0.46 0.46 0.46 0.44 0.43 0.42 0.43 0.39 0.38
Two-stage Boosting 0.46 0.48 0.49 0.47 0.47 0.47 0.47 0.45 0.44 0.46 0.41 0.40
N 65 59 62 59 60 55 58 50 49 54 54 56

(c) Cases where linear procedure is more accurate
0.0 AR(BIC) 0.29 0.41 0.41 0.47 0.45 0.49 0.46 0.45 0.46 0.42 0.41 0.38

Direct Boosting 0.25 0.37 0.37 0.43 0.40 0.44 0.41 0.40 0.41 0.36 0.35 0.32
Two-stage Boosting 0.28 0.41 0.41 0.47 0.45 0.49 0.45 0.44 0.45 0.41 0.40 0.36
N 45 49 51 52 55 54 55 65 63 60 65 66

0.1 AR(BIC) 0.21 0.30 0.32 0.36 0.37 0.37 0.36 0.38 0.37 0.34 0.36 0.35
Direct Boosting 0.19 0.28 0.29 0.33 0.33 0.34 0.33 0.34 0.33 0.30 0.31 0.30
Two-stage Boosting 0.21 0.30 0.32 0.36 0.37 0.37 0.36 0.37 0.37 0.33 0.35 0.34
N 30 36 34 38 38 39 37 43 44 40 41 39

Notes: See Table 4.
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Table 7: Series by Category, Average Empirical R2 for the Linear and the Hybrid Two-stage Boosting Methods, Forecasting Period 1999-2016

Category Method h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 7 h = 8 h = 9 h = 10 h = 11 h = 12

Output and Income Linear 0.16 0.22 0.20 0.22 0.21 0.20 0.19 0.18 0.17 0.15 0.14 0.13
Two-stage Boosting 0.20 0.26 0.24 0.26 0.27 0.27 0.27 0.26 0.25 0.24 0.22 0.21
Change (%) 29.8 20.2 19.2 17.7 26.0 37.4 43.8 44.2 49.0 56.8 60.0 55.6
N 10 11 14 13 13 14 14 14 14 14 14 14

Orders and Inventories Linear 0.31 0.28 0.46 0.40 0.39 0.47 0.36 0.42 0.31 0.23 0.21 0.17
Two-stage Boosting 0.31 0.31 0.48 0.40 0.40 0.47 0.37 0.42 0.33 0.27 0.26 0.23
Change (%) 1.1 11.3 3.9 1.5 0.7 0.7 2.1 0.5 4.8 14.1 21.6 31.8
N 4 5 3 4 4 3 4 3 4 5 5 5

Labor Market Linear 0.49 0.50 0.55 0.55 0.53 0.58 0.55 0.53 0.53 0.49 0.49 0.47
Two-stage Boosting 0.50 0.52 0.58 0.58 0.56 0.61 0.56 0.54 0.54 0.50 0.50 0.48
Change (%) 1.8 4.7 5.3 5.4 5.9 4.8 3.4 2.7 1.9 1.4 1.9 1.7
N 26 29 27 27 28 25 26 26 25 26 25 25

Consumption and Orders Linear 0.95 0.94 0.92 0.91 0.89 0.87 0.84 0.82 0.79 0.76 0.73 0.69
Two-stage Boosting 0.95 0.94 0.92 0.91 0.88 0.86 0.83 0.81 0.78 0.75 0.71 0.67
Change (%) −0.0 −0.1 −0.1 −0.2 −0.4 −0.8 −1.3 −1.4 −1.5 −1.5 −2.1 −3.4
N 10 10 10 10 10 10 10 10 10 10 10 10

Money and Credit Linear 0.28 0.42 0.43 0.44 0.48 0.50 0.53 0.54 0.56 0.61 0.61 0.63
Two-stage Boosting 0.28 0.42 0.43 0.44 0.48 0.50 0.52 0.54 0.56 0.60 0.61 0.63
Change (%) −0.2 −1.5 −0.4 0.6 −0.5 −0.4 −0.8 −0.3 0.3 −0.5 −0.3 0.3
N 9 9 11 12 12 12 12 12 12 11 11 11

Stock Market Linear 0.41 0.42 0.26 0.21 0.18 0.12 0.09 0.08 0.07 0.06 0.06 0.05
Two-stage Boosting 0.42 0.44 0.30 0.28 0.25 0.19 0.18 0.22 0.18 0.17 0.16 0.14
Change (%) 2.0 5.0 14.2 31.3 38.9 58.6 92.9 162.4 162.4 175.4 178.2 174.4
N 3 2 3 3 3 3 3 2 2 2 2 2

Interest Rate and Exchange Rates Linear 0.56 0.73 0.73 0.66 0.61 0.63 0.66 0.61 0.57 0.51 0.35 0.31
Two-stage Boosting 0.56 0.74 0.74 0.67 0.61 0.63 0.67 0.60 0.56 0.50 0.36 0.31
Change (%) 0.1 0.6 0.5 0.9 0.7 0.5 1.1 −1.1 −0.3 −2.3 5.4 −1.1
N 14 9 8 8 8 7 6 6 6 6 8 8

Prices Linear 0.24 0.40 0.49 0.54 0.58 0.61 0.63 0.65 0.67 0.69 0.70 0.71
Two-stage Boosting 0.25 0.40 0.49 0.54 0.58 0.61 0.63 0.65 0.67 0.68 0.69 0.71
Change (%) 2.6 −0.5 −0.7 −0.4 −0.3 0.0 −0.2 −0.1 −0.3 −0.2 −0.4 −0.2
N 19 20 20 20 20 20 20 20 20 20 20 20

Notes: Only series where R̂2 ≥ 0.1 for the linear or the two-stage boosting forecast are included.
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Figure 1: Performance of Simulated Predictions for xT+h = yT+h and T = 500
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Figure 2: Performance of Simulated Predictions for xT+h =
∑h

j=1 yT+j and T = 500
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Figure 3: Empirical Out-of-sample R2 for Selected FRED-MD Series
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Figure 4: Empirical Out-of-sample R2 for Selected FRED-MD Series
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