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ABSTRACT

Often preferences of agents are such that any sensible goal of the collec-
tive must admit a tie between all alternatives. A case in point is the Con-
dorcet cycle with 3 alternatives and 3 voter. The standard formulation
in mechanism design stipulates that in this case all alternatives must be
equilibrium outcomes of the decision making mechanism. However, as
far as the idea of an equilibrium is to predict the outcome of a mecha-
nism, we could just as well demand that there are no equilibria at all.
Although this may seem innocent, and in a technical sense that’s right,
it allows the mechanism designer to achieve goals that are otherwise
impossible to implement.
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1 Introduction

The fact that social choice theory was born in the aftermath of Arrow’s impossibility

theorem (Arrow [4]) was an omen for things to come: Results in this field have had

a negative connotation ever since, either saying that no goal of society can satisfy

certain desiderata ([4],[24],[57]), or that there would be no reliable way to collect the

information that is needed anyway
(

[9],[10],[15],[19],[26],[27],[28],[32],[54],[55]
)

. The

second problem is more fundamental in the sense that, at the end of the day, a

decision needs to be made.

To be precise, and to define concepts we need later on, let N =
{

1, . . . ,n
}

be the set of

individuals, A the set of alternatives, Θ = Θ1 × · · · ×Θn the set of states, and �θi the

preference relation of individual i over A at state θ. Furthermore, suppose that the

state space is unrestricted,1 and the goal of the collective, or the choice rule, can be

represented as a mapping f : Θ → A that associates a desired alternative f (θ) ∈ A

to each state θ ∈Θ. Then, either some individual i wants to misrepresent his or her

information at some state θ = (θ1,θ2, . . . ,θn), that is

f (θ′i ,θ−i ) ≻
θ
i f (θi ,θ−i ) for some θ′i ∈Θi ,

f is dictatorial (selects the best alternative of some individual at all states), or it has

only 2 alternatives in the range
∣

∣

∣f (Θ)
∣

∣

∣ = 2.2 This is the famous Gibbard-Satterthwaite

-theorem ([27],[55]) and a choice rule that is not prone to this type of misrepresenta-

tion is called strategy-proof.

Two potential ways to escape this impossibility suggest themselves immediately. The

outcome could be random, that is f (θ) ∈ ∆(A), or it could be a subset of alternatives,

that is f (θ) ⊆ A. Unfortunately, both generalizations arrive at a similar conclusion

as the GS -theorem. In the first case dictatorship is just replaced with random

dictatorship ([26]), and in the second case, a similar conclusion holds for all sensible

ways to generalize misrepresentation to set valued functions i.e. correspondences

([9],[10],[15],[19]).

After the birth of mechanism design roughly in the late 1960s and early 1970s, pio-

1By unrestricted state space we mean that for any preference profile �= (�1,�2, . . . ,�n), there

exists a state θ ∈ Θ, such that �θi =�i for all i ∈ N . In words, all preference configurations are

possible.
2As usual, θ−i is the profile (θ1, . . . ,θi−1,θi+1, . . . ,θn) that specifies the preference relation of each

individual except i, and f (Θ) is the set
{

f (x) | x ∈ A
}

.
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neered by Leonid Hurwicz, Stanley Reiter and Eric Maskin, new possibilities began

to emerge.3 Unfortunately, in the case of unrestricted state space, this approach has

not lead that far. Nowadays we know that if the Nash equilibrium correspondence of

a decision mechanism is a function, then it is either dictatorial, constant, or selects

between two alternative only, and in all other cases, it tends to be too large in the

sense of selecting too many alternatives at each state.4 On the other hand, while

some refinements of Nash equilibrium admittedly give more permissive results, like

virtual implementation ([2]), subgame perfect implementation ([3],[38],[59]) and im-

plementation using undominated strategies ([49]), they all have well-known problems,

and moreover, Nash equilibrium is certainly the most natural solution concept since

it demands the least amount of cognitive power from the individuals.5

In retrospect it seem that about the only way to realize a choice rule with good prop-

erties is to identify logical connections in the set of preferences − Black’s single-peaked

domain (Black [12]) with the median voter rule is a case in point ([13],[40]).6 This

is often unsatisfactory, and utterly so as a general solution, since there is nothing to

guarantee that such a logic will suggest itself or even be there. Although the common

explanation that preferences of voters are single-peaked over the left-right -axis is in-

tuitively compelling, is there any strong reason why voter would conceptualize things

like this, or is it rather so that in most voting situations a natural assumption is that

the state space is unrestricted. Of course, if we admit this, then we have to admit

that social choice theory is really facing an inescapable impossibility. We argue that

this conclusion is far too hasty. In the standard formulation of mechanism design,

if all alternatives are equally good for the collective, then all of them must be Nash

equilibrium outcomes of the decision mechanism. However, since we do not need to

predict the outcome in this particular case, we could just as well require that there

are no equilibria at all. It may seem like there is no way this can have substantial

consequences, but it does, and even in the unrestricted state space.

The rest of the paper is organized in the following way. In Sect. 2 we propose a

modification to the standard mechanism design problem that is more in line with the

interpretation of an equilibrium as a prediction. Although we do not want to rename

old concept, but since it serves us so well here, we call the standard formulation

3For a review of the main contributions see [8], [16], [17], [31], [34], [36], [48] and [58].
4See Saijo [53] in addition.
5See Aghion, Fudenberg, Holden, Kunimoto and Tercieux (2015): “Subgame-Perfect Implemen-

tation Under Information Perturbations”. The Quarterly Journal of Economics 127(4): 1843-1881.
6Another one is a quasi-linear environment with the VCG -mechanism. See also Aswal et al. [7].
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resolute mechanism design and the new formulation irresolute mechanism design.

Then, in Sect. 3, we present some general results. Sect. 4 shows that our modification

expands the set of Nash implementable choice rules even in the unrestricted state

space. In particular, a specific Condorcet extension is now implementable in the case

of 3 individuals and 3 alternatives, something that was certainly not possible in the

standard sense. Sect. 5 concludes with a short discussion.

2 The Devil is in the Details: Resolute vs. Irresolute

Mechanism Design

Leonid Hurwicz ([29],[30]) was the first to give an explicit formulation of the idea

that the goal of society can be separated from the mechanism that is used to realize

it.7 Given n message spaces M1, . . . ,Mn, one for each individual, a mechanism g on

A is a mapping

g :M1 × · · · ×Mn→ A.

We denote M =M1 × · · · ×Mn =
n�
i=1
Mi , and write this mechanism as G = (M,g).8 In

contrast to strategy-proofness, where the only concern is whether individuals have an

incentive to lie or not, we need to be more exact on how we expect them to behave.

The most natural assumption, and the one that was used at the very beginning, is

that a Nash equilibrium will be played.

Naturally, whether a given message is a Nash equilibrium or not, will depend on the

true state. Once a state θ ∈ Θ has been given, and preferences are therefore fixed,

mechanism G becomes a game Γ(θ) = (G,θ). The message profile m∗ = (m∗1, . . . ,m
∗
n) is

a pure strategy Nash equilibrium of this game if, and only if, g(m∗) �θi g(mi ,m
∗
−i ) for

all i ∈ I and all mi ∈Mi .
9 The set of all pure strategy Nash equilibrium profiles of

Γ(θ) is denoted by NE(G,θ). Now, with all this machinery in place, we can formulate

what Hurwicz ment.

Definition 1 (Resolute Mechanism Design). Choice rule f :Θ→ A is Nash imple-

mentable by a resolute mechanism if there exists G = (M ;g) such that g(NE(G,θ)) =

f (θ) for all θ ∈Θ. �

7Historical details can be found from Jackson [31], Maskin and Sjöström [34] and Moore [36].
8Although g already defines the message space.
9Here m∗

−i = (m∗1, . . . ,m
∗
i−1,m

∗
i+1, . . . ,m

∗
n), and (mi ,m

∗
−i ) = (m∗1, . . . ,m

∗
i−1,mi , m

∗
i+1, . . . ,m

∗
n), as usual.
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In words, exactly those alternatives that choice rule f regards as optimal are Nash

equilibrium outcomes of G at all states. The path-braking result of Maskin [35] says

that if a choice rule is Nash implementable, then it is (Maskin) monotonic, and if

it is monotonic and satisfies no-veto power (NVP), then it is Nash implementable.10

Let

Li(x,θ) ≡
{

y ∈ A | x �θi y
}

be the lower contour set of x for individual i at state θ. Choice rule f is monotonic,

if for all θ,ψ ∈ Θ, and all x ∈ f (θ), if Li(x,θ) ⊆ Li(x,ψ) for all i ∈ I , then x ∈ f (ψ).
11

It satisfies no-veto power , if for all θ ∈ Θ, and all x ∈ A, if x is the best alternative

of at least n− 1 agents at state θ, then x ∈ f (θ).

Although this approach helps, it does not get us far in the case of unrestricted domain.

By Maskin [35] a choice rule that satisfies Definition 1 must be monotonic, and if

it is single-valued as well, then the result of Muller and Satterthwaite [41] says that

it must be strategy-proof. Therefore, by the GS -theorem, the choice rule must be

either dictatorial, constant or select between two alternatives only. However, although

correspondences do not help with strategy-proofness, they do now. Maskin [35] shows

that the Pareto correspondence, which selects all Pareto optimal alternatives at each

state, and also the individually rational correspondence, which for a fixed alternative,

selects all those alternatives that are considered at least as good by all, are both Nash

implementable by a resolute mechanism. Unfortunately, even so, we are still left with

two well-know problem: (1) The set of alternatives that these correspondences regard

as acceptable are too large (even a dictatorial rule is Pareto optimal) and (2) once

the mechanism has multiple equilibria at each states this will almost certainly lead to

a coordination failure (what is the equilibrium that one anticipates others to play).

As we already explained in the introduction, although some refinements of Nash

equilibrium give more optimistic results, it is a big question mark whether these

results are very practical. However, even if they are, it is extremely unsatisfactory

that the most natural solution concept, that of Nash equilibrium, does not give very

encouraging results in the unrestricted state space.

We propose a novel approach to overcome some of these difficulties. To introduce the

idea, suppose that N = {1,2,3}, A = {a,b,c}, and preferences at state θ are as in the

10A full characterization (a necessary and sufficient condition) was later given by Moore and

Repullo [37].
11Monotonicity is called strong positive association by Muller and Satterthwaite (1977).
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table below:12

Individual 1

a

b

c

Individual 2

c

a

b

Individual 3

b

c

a

TABLE 1. A Condorcet cycle

These preferences exhibit what is known as a Condorcet cycle ([23],[61]) − but this

is not the point. The point is that while it is natural to insist that choice rule f

selects all alternatives at state θ, that is f (θ) = A, it is not equally compelling to

insist that g(NE(G,θ)) = A as in Definition 1. We could just as well be satisfied with

g(NE(G,θ)) = ∅ (that is NE(G,θ) = ∅).13 After all, if the mechanism designer does

not care what is the final outcome, what difference does it make if the mechanism

does not have an equilibrium? This is even more so if the mechanism treats all

alternatives in equal manner.

OBSERVATION: As far as the idea of an equilibrium is to predict the outcome

of a mechanism, there is clearly no need for a decision making mechanism to always

have an equilibrium. ♦

Whether this is the purview of game theory community in general ([25],[33],[42],[45],

[56]), and opinions to the opposite have certainly been presented ([6], [11], [50]), it

is clear that without this interpretation the enterprise of mechanism design would

be pretty much void ([8], [16], [17], [31], [34], [36], [48], [58]). Despite of what the

commonly accepted view is, this observation does suggest that a certain amount of

slack is possible in Definition 1.

Definition 2 (Irresolute Mechanism Design). Choice rule f : Θ → A is Nash

implementable by an irresolute mechanism if there exists a mechanism G = (M ;g),

such that (1) g(NE(G,θ)) = f (θ) whenever f (θ) , g(M) and (2) either g(NE(G,θ)) =

f (θ) or g(NE(G,θ)) = ∅ if f (θ) = g(M). �

This definition goes directly against an old tradition in social choice theory that

consider consistency as an important property of a mechanism ([1],[18],[21],[22],[46],

12The convention is that an alternative higher in the table is preferred.
13This requires that infinite message spaces are allowed, otherwise there would exist at least one

mixed-strategy equilibrium ([43],[44]). For all practical purposes, however, this may only require

that individuals see the message space as potentially infinite (which could be generated by waiting

time for example). See also Artemov [5].
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[47]).14 On the other hand, since we violate this property in the weakest way imag-

inable, we should rather worry whether it make any difference at all. Two things

indicate that it might. First of all, we know from the work of Donald Saari ([51],[52])

that a small set of preference configurations are behind most of the problems, and

second, resent developments in mechanism design show that small things can have a

huge effect ([14] is a case in point).

3 General Results

For a given CR f :Θ→ A, define Θ
R ⊆Θ as the set

Θ
R =

{

θ ∈Θ | f (θ) , A
}

.

In words, this is the set of states where all alternatives are not considered equally

good. Using essentially the same methods as Maskin [35] we get the following results.

Theorem 1. If CR f :Θ→ A is Nash implementable by an irresolute mechanism,

then f :ΘR→ A is monotonic.

Proof. Suppose G = (M ;g) is an irresolute mechanism that Nash implements f .

Since for all θ ∈ΘR and all a ∈ f (θ), there is an equilibrium m∗ ∈NE(G,θ) such that

g(m∗) = a, the claim follows directly from Maskin [35] �

For the converse additional conditions are needed.

Definition 3. We say that CR f : ΘR → A is irresolute symmetric, if for all

θ ∈ Θ \ ΘR, either (i) there does not exist any ψ ∈ Θ
R and x ∈ f (ψ), such that

Li(x,ψ) ⊆ Li(x,θ) for all i ∈ N , or (ii) for any x ∈ A, there exists ψ ∈ ΘR such that

x ∈ f (ψ), and Li(x,ψ) ⊆ Li(x,θ) for all i ∈N . �

Definition 4. We say that CR f : Θ→ A satisfies strict no-veto power (SNPV),

if for all θ ∈ Θ, and all x ∈ A, if x is the top alternative of at least n − 1 agents at

state θ, then f (θ) = {x}. �

Notice that NVP requires only that under these conditions x ∈ f (θ) is the case.

Theorem 2. If CR f : ΘR→ A is monotonic, irresolute symmetric, and satisfies

SNVP, then CR f :Θ→ A is Nash implementable by an irresolute mechanism.

14Consistency means that at least one equilibrium must exist at all states.
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Proof. We use a modification of the Maskin-mechanism (see [35]) to prove this

claim. Let the message space of agent i be Mi = Θ
R × A ×N+, denote a typical

message of agent i by mi =
(

θi ,xi ,ni
)

, and define the outcome function g :M→ A by

the following three rules:

(1) If mi = (θ,x,ni ) for all i ∈N , and {x} = f (θ), then g(m) = x.

(2) If mj = (θ,x,nj ) for all j ∈N \ {i}, mi = (θi ,xi ,ni ), and {x} = f (θ), then

g(m) =















xi , if xi ∈ Li(x,θ),

x, otherwise.

(3) In all other cases, denote k = argmax
i∈N

ni , and set

g(m) = xk .

Let us verify that G = (M ;g) implements f :Θ→ A. First of all, since SNPV implies

NPV, we know by Maskin [35] that G Nash implements f : ΘR→ A. Therefore, we

only need to consider states in Θ \ΘR.

Suppose that ψ ∈ Θ \ΘR. If mechanism G has a Nash equilibrium under rule (1),

then all alternatives in A must be Nash equilibrium outcomes under rule (1) due to

the fact that f :ΘR→ A is irresolute symmetric. Therefore, in this case, Definition 2

is satisfied. Assume, then, that there is a Nash equilibrium under rule (2) or (3). By

SNVP this means that f (ψ) is a singleton, which is a contradiction, since ψ ∈Θ \ΘR

means that f (ψ) = A. Taken together these two observations prove our claim. �

4 Just How Deep Does the Rabbit Hole Go?

Since our sufficient condition in Theorem 2 is fairly technical, we give an example

to shows that Definition 2 really makes a difference. Suppose that there are three

individuals N = {1,2,3}, three alternatives to choose form A = {a,b,c}, and all profiles

of strict orderings are possible. Alternative x ∈ A is a Condorcet winner at state

θ if it beats all other alternatives in a pairwise comparison.15 Define choice rule

f Con :Θ→ A by the rule:

f Con(θ) =















x, if x is a Condorcet winner at θ,

A, otherwise.

15At least two individuals prefer x to y for both y ∈ A \ {x}.
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In the literature f Con is called a Condorcet extension ([23],[61]). Furthermore, in this

simple case of 3 individuals and 3 alternatives, most, if not all, reasonable Condorcet

extension coincide with f Con (the top cycle for example).

Since exactly all strict rankings are possible, there are 63 = 216 preference profiles

in the domain of f Con, only 12 of which do not have a Condorcet winner. In fact,

f Con is the closest thing to a function that one can hope for in this domain without

violating either anonymity or neutrality.16

Lemma 1. f Con :Θ→ A is not Nash implementable by a resolute mechanism (or

in the standard sense).

Proof. This follows from the result of Maskin [35] once we have shown that f Con

is not monotonic. Suppose that at state θ preferences are:

Individual 1

a

b

c

Individual 2

c

a

b

Individual 3

b

c

a

Thus f Con(θ) = A by definition. Suppose, then, that at state ψ preferences are in-

stead:

Individual 1

a

b

c

Individual 2

c

a

b

Individual 3

b

a

c

We get these from the preferences at θ by propping a above c in the ranking of

individual 3. Now f Con(ψ) = {a} by definition. Therefore, f Con is not monotonic,

since monotonicity would imply that b ∈ f Con(ψ), and as a consequence not Nash

implementable by a resolute mechanism either. �

Although this lemma does not tell us anything we did not already know, it is instruc-

tive for the things to come. Now consider the CR f Con :ΘR→ A. As there are only

12 profiles where a unique Condorcet winner does not exist, ΘR is almost as large as

Θ, namely
∣

∣

∣Θ
R
∣

∣

∣=216-12=204 (or 100 · 204216 ≈ 94% of the size).

Lemma 2. CR f Con :ΘR→ A is monotonic and satisfies SNVP.

16See the book of Moulin [39] for exact defintions.
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Proof. If at least two individuals think that alternative x is the best at state θ,

then it must be a unique Condorcet winner, and therefore x = f Con(θ). Thus f Con

satisfies SNVP even if the domain is Θ. The fact that Condorcet winner is always

unique if the domain is Θ
R implies monotonicity. Suppose that f Con(θ) = {x}. If

alternative x does not drop in the preference of anyone when going from state θ to

state ψ, in the sense that Li(x,θ) ⊆ Li(x,ψ) for all i ∈N , then it must beat the other

two alternatives in a pairwise comparison also at state ψ. Hence f Con(ψ) = {x} as

required by monotonicity. �

Taken together, Lemma 1 and 2 clearly indicate that those 12 preference profiles

where Condorcet winner does not exist are behind most of the problem. But does

Definition 2 help us here? We show that it does.

Lemma 3. CR f Con :ΘR→ A is irresolute symmetric.

Proof. Let θ ∈Θ\ΘR. We show that item (i) in Definition 3 must hold. Suppose

that for some ψ ∈ ΘR, such that x = f (ψ), we have Li(x,ψ) ⊆ Li(x,θ) for all i ∈ N .

This is impossible since it would imply that x is a unique Condorcet winner also at

θ which we know is not the case as θ ∈Θ \ΘR. �

Corollary. CR f Con :Θ→ A is Nash implementable by an irresolute mechanism.

Proof. By Lemma 2 and 3 this follows from Theorem 2. �

5 Concluding Discussion

The result that we have derived is not a trick. On the contrary, we claim that there

is a shortcoming in the original definition (Definition 1), and that our reformulation

(Definition 2) is more appropriate and deserves a further study. The reason why it

expands the set of implementable choice rules substantially is simple. Each equilib-

rium in a decision making mechanism under one preference profile implies constraints

on what can be selected at other preference profiles through monotonicity. When a

choice rule judge all alternatives equally good, a large bundle of constraints is gener-

ated, some of which are necessarily strong: Those alternatives that are valued highly

by some agents must be valued little by others. Otherwise there would be something

wrong with the choice rule that deems all alternatives equally good.

Although our goal was not to uncover all consequences of Definition 2, but rather

to show that they are substantial, it is fair to ask whether, and to what extent, our
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Theorem depends on the parameter of the problem (number of individuals and num-

ber of alternatives)? To have more structure in the set of preferences, suppose that

N =
{

1,2,3
}

, and A =
{

a,b,c,d
}

, and let preferences be as in Table 2 below. Most

reasonable choice rules would suggest that alternatives a, b and c should all be held

equally good at this profile. On the other hand, since alternative d is not accept-

able, Definition 2 does not help us. However, is there any reason to expect that the

mechanism we used would not work, after all, why would anyone suggest d. It seems

inevitable that the outcome would belong to the set {a,b,c}. Suppose, then, that

preferences are as in Table 3 below instead.

Individual 1

a

b

c

d

Individual 2

c

a

b

d

Individual 3

b

c

a

d

TABLE 2. Another instance of a Condorcet cycle

Individual 1

a

b

c

d

Individual 2

c

a

b

d

Individual 3

d

b

c

a

TABLE 3. Yet another instance of a Condorcet cycle

Again, alternatives a, b and c form a Condorcet cycle, but this time individual 3 might

suggest d. Therefore, it is not clear whether our Theorem can be generalized, and

if, then exactly how. Despite of this, however, it is nice to know that in comparison

to the standard case (Definition 1) where the only sensible thing to do is to make

a majority decision between two alternatives, exactly the same principle becomes

Nash implementable for all practical purposes (Definition 2) also in the case of three

alternatives if infinite message spaces are allowed.
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