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1 Introduction

Many pension insurance contracts as well as life annuity contracts contain minimum guarantees

either in the form of a minimum guaranteed rate of return, minimum guaranteed monetary payments,

or both. It is well-known from the financial literature on derivative instruments that the value of

such guarantees may be relatively high (in fair value terms) and that the value of these instruments

increases as further optionalities, like exercise timing flexibility, are introduced. Moreover, given

the considerable long maturity of the above mentioned class of insurance contracts, the fair values

of these claims are typically very sensitive with respect to unexpected parametric changes in the

stochastic dynamics characterizing the inter-temporal evolution of the underlying asset value. Thus,

it is naturally of importance to study how embedded potentially costly rights of the issuer to

terminate the contract prior expiry (i.e. cancelation rights) affect the value and exercise strategy of

contingent contracts containing minimum guarantees. Especially, delineating those circumstances

under which the issuer finds optimal to exercise a costly cancelation option is important since it

provides valuable information on the maximal amount the issuer is prepared to pay from the right

to terminate a contract prior expiry.

In light of our previous arguments our objective in this study is to consider by following the

pioneering study by Kifer (2000) and the subsequent analysis by Kyprianou (2004) the valuation

of a perpetual δ-penalty minimum guaranteed payment option in the case where the value of the

underlying dividend paying asset follows a linear and time homogenous diffusion. The considered

game option constitutes a δ-penalized version of the minimum guaranteed payment option originally

analyzed in Guo and Shepp (2001). This option guarantees to the holder that whenever the option

is exercised, the holder receives the maximum of the current asset value and a pre-determined

guarantee. The δ-penalized version of this contingent contract has the extra feature that it offers

to the issuer an embedded costly cancelation option which permits the issuer to exercise the option

as well but only at a predetermined cost which has to be added into the exercise payoff of the

holder. Consequently, even though the value of this contingent contract naturally dominates the

exercise payoff of the perpetual minimum guaranteed payment option its value is always majorized

by the sum of this payoff and the predetermined penalty. Moreover, since the issuer has the option

to terminate the contract early as well, the valuation of this contract can be interpreted as the
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valuation of the saddle point strategy and value of an associated Dynkin game (for mathematical

references, see Friedman (1973a,b), Bensoussan and Friedman (1974, 1977), Karatzas and Wang

(2001), Fukushima and Taksar (2002), Touzi and Vieille (2002), Boetius (2005), Ekström (2006),

Ekström and Villeneuve (2006), and Alvarez (2006)). Instead of relying on variational inequalities,

we characterize the value as well as the optimal exercise policy explicitly by focusing on saddle

point strategies which can be characterized as first exit times from open intervals belonging into

the state space of the underlying diffusion. Having derived this representation, we investigate how

the value can be found by choosing the boundaries so that the resulting value is extremal. In this

way, the resulting pair of boundaries can be derived from a pair of ordinary first order conditions.

We state a set of typically satisfied conditions under which a unique pair exists and characterize

the value in terms of these boundaries. As intuitively is clear, two optimal regimes arise depending

on the precise magnitude of the penalty (and, therefore, the cost of protection). If the penalty

exceeds a volatility dependent critical size, then it is always suboptimal to the issuer to exercise the

opportunity to terminate the contract early and, consequently, in that case both the value as well

as the optimal exercise strategy coincide with their corresponding counterparts in the non-strategic

setting. However, if the penalty is below the above mentioned critical penalty, then it becomes

optimal to the issuer to exercise the cancelation right as soon as the underlying asset value coincides

with the minimum guarantee. Given that the critical penalty is a monotonically increasing function

of volatility, an interesting implication of our findings is that an unexpected increase in volatility

may result into a switch from the regime where the value coincides with the nonstrategic one to the

corner solution case where also the issuer finds optimal to exercise early.

The contents of this study are as follows. In section two we consider the considered class of

financial derivative instruments and the underlying value of the dividend paying asset. In section

three the value and optimal exercise strategy is characterized in the typical case where the underlying

dynamics are characterized by a geometric Brownian motion. In section four we then extend our

analysis to the general setting and state a set of general conditions under which the conclusions

on the sensitivity of the optimal policy with respect to volatility changes obtained in the geometric

Brownian motion case are qualitatively robust and illustrate our general results explicitly in the

mean reverting case. Finally, section five concludes our study.
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2 The δ-penalty Minimum Guaranteed Payment Option

The main objective of this study is to characterize the value and equilibrium exercise strategy of a

class of derivative instruments containing strategic elements. In order to accomplish this task we

first have to characterize the state variable modeling the underlying asset value. As usually, we

assume that it constitutes a linear, time homogeneous, and regular diffusion process defined on the

complete filtered probability space (Ω,P, {Ft}t≥0,F) and that it evolves on R+ according to the

dynamics described by the Itô-stochastic differential equation

dXt = µ(Xt)dt + θσ(Xt)dWt, X0 = x, (1)

where Wt denotes standard Brownian motion, θ ∈ R+ is an exogenously given constant multiplier

(introduced in order to consider the impact of increased volatility on the optimal policy and its

value), and both the drift coefficient µ : R+ 7→ R and the diffusion coefficient σ : R+ 7→ R+ are

assumed to be sufficiently smooth for guaranteeing the existence and uniqueness of a (weak) solution

for the stochastic differential equation (1) (at least continuous, cf. Borodin and Salminen (1996),

pp. 46–47). In order to avoid interior singularities, we also assume that the diffusion coefficient

σ(x) > 0 for all x ∈ (0,∞). As usually,

Aθ =
1
2
θ2σ2(x)

d2

dx2
+ µ(x)

d

dx

denotes the differential operator associated to the underlying diffusion Xt. It is well-known that

given the assumptions of our study, there are two linearly independent fundamental solutions ψθ(x)

and ϕθ(x) (constituting the minimal r-harmonic mappings for the diffusion X) satisfying a set of

appropriate boundary conditions based on the boundary behavior of the process X and spanning the

set of solutions of the ordinary differential equation (Aθu)(x) = ru(x) (cf. Borodin and Salminen

2002, pp. 18 - 19). Moreover, ψ′θ(x)ϕθ(x) − ϕ′θ(x)ψθ(x) = BθS
′
θ(x), where Bθ > 0 denotes the

constant Wronskian of the fundamental solutions ψθ(x) and ϕθ(x) and

S′θ(x) = exp
(
−

∫
2µ(x)dx

θ2σ2(x)

)

denotes the density of the scale function of X.

Our purpose in this paper is to analyze the properties of the value and optimal exercise policy

of the δ-penalty minimum guaranteed payment option (the δ-penalty MGP-option). The value of
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this option can be interpreted as the value of a infinite horizon Dynkin game characterized by the

function

Πx(τ, γ) = Ex

[
e−r(τ∧γ)

(
max(Xτ , p)1{τ≤γ} + (max(Xτ , p) + δ)1{τ>γ}

)]
, (2)

where p > 0 denotes the minimum guaranteed payment and δ > 0 denotes the penalty that the issuer

has to pay to the holder in case the issuer exercises first (i.e. in case the issuer chooses to exercise the

costly cancelation right before the holder exercises the option). As usually, the associated lower and

upper values are defined as V θ(x) = supτ infγ Πx(τ, γ) and V θ(x) = infγ supτ Πx(τ, γ), respectively.

It is clear that

max(x, p) ≤ V θ(x) ≤ V θ(x) ≤ max(x, p) + δ.

Hence, if we also have V θ(x) ≥ V θ(x), then the considered stochastic optimal stopping game has a

value and this value is denoted as Vθ(x) = V θ(x) = V θ(x).

Finally, a pair of stopping times (τ ′, γ′) is said to constitute a saddle point of the considered

Dynkin game whenever the condition Πx(τ, γ′) ≤ Πx(τ ′, γ′) ≤ Πx(τ ′, γ) is satisfied for all stopping

times τ, γ. In light of this inequality, it is clear that the existence of a saddle point guarantees the

existence of the value for the considered game. Moreover, if the considered Dynkin game has the

value Vθ(x), then the pair of stopping times

τ∗ = inf{t ≥ 0 : Vθ(Xt) ≤ max(x, p)} (3)

and

γ∗ = inf{t ≥ 0 : Vθ(Xt) ≥ max(x, p) + δ} (4)

constitute a saddle point for the game.

As we will later establish, the value of the δ-penalty MGP-option is closely related to the value

Jθ : R+ 7→ R+ of the standard MGP-option characterized by the ordinary optimal stopping problem

Jθ(x) = sup
τ

Ex

[
e−rτ max(Xτ , p)

]
(5)

which was originally considered in Guo and Shepp (2001) in the case the underlying dynamics are

characterized by geometric Brownian motion.
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3 The Geometric Brownian Motion Case

We begin the analysis of our study by considering the δ-penalty MGP-option in the case where the

underlying diffusion evolves according to a standard geometric Brownian motion characterized by

the infinitesimal coefficients µ(x) = µx and σ(x) = θx, where µ, θ ∈ R+ are known constants. It

is well-known that in this case the fundamental solutions of the ordinary second order differential

equation (Aθu)(x) = ru(x) read as ψθ(x) = xηθ and ϕθ(x) = xνθ , where

ηθ =
1
2
− µ

θ2
+

√(
1
2
− µ

θ2

)2

+
2r

θ2
> 0

and

νθ =
1
2
− µ

θ2
−

√(
1
2
− µ

θ2

)2

+
2r

θ2
< 0

denote the the roots of the characteristic equation θ2a(a− 1) + 2µ = 2r.

Define now the functional Fa,b : R+ 7→ R+ as the expected present value

Fa,b(x) = Ex

[
e−rτ(a,b) max(Xτ(a,b)

, p)
]
, (6)

where τ(a,b) = inf{t ≥ 0 : Xt 6∈ (a, b)} denotes the first exit time from the open interval (a, b). It

is well-known from the literature on linear diffusions that this value satisfies for all x ∈ (a, b) the

ordinary differential equation (AθFa,b)(x) = rFa,b(x) subject to the boundary conditions Fa,b(a) =

max(a, p) and Fa,b(b) = max(b, p). Hence, we observe that the expected present value Fa,b(x) can

be re-expressed explicitly as

Fa,b(x) =





max(x, p) x ≥ b

max(a, p) ϕ̂b(x)
ϕ̂b(a) + max(b, p) ψ̂a(x)

ψ̂a(b)
x ∈ (a, b)

max(x, p) x ≤ a,

(7)

where in the present case the functions ψ̂a(x) and ϕ̂b(x) are defined as

ψ̂a(x) = xηθ − aηθ−νθxνθ (8)

and

ϕ̂b(x) = xνθ − bνθ−ηθxηθ . (9)
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Given the representations (6) and (7) it is clear that for all x ∈ R+ we have Jθ(x) ≥ Fa,b(x), where

Jθ(x) = sup
τ

Ex

[
e−rτ max(Xτ , p)

]
. (10)

In light of this inequality, we now investigate under which conditions the boundaries a and b can

be chosen so that the value Fa,b(x) coincides with the value of the optimal stopping problem (10).

These conditions are now summarized in the following.

Lemma 3.1. (Guo and Shepp (2001)) Assume that r > µ. Then Jθ(x) = Fx∗θ ,y∗θ (x), where

x∗θ =
ηθ

ηθ − 1

(
νθ(ηθ − 1)
ηθ(νθ − 1)

) 1−νθ
ηθ−νθ

p < p (11)

y∗θ =
ηθ

ηθ − 1

(
νθ(ηθ − 1)
ηθ(νθ − 1)

) −νθ
ηθ−νθ

p > p (12)

Proof. Since Jθ(x) ≥ Fx∗θ ,y∗θ (x) it is sufficient to demonstrate that the reverse inequality holds. To

this end, we first notice that the proposed value Fx∗θ ,y∗θ (x) is continuously differentiable on R+, twice

continuously differentiable on R+\{x∗θ, y∗θ}, and satisfies the inequalities |F ′′
x∗θ ,y∗θ

(x∗θ±)| < ∞ and

|F ′′
x∗θ ,y∗θ

(y∗θ±)| < ∞. Moreover, since the value Fx∗θ ,y∗θ (x) can be re-expressed on (x∗θ, y
∗
θ) as

Fx∗θ ,y∗θ (x) =
p

ηθ − νθ

(
ηθ

(
x

x∗θ

)νθ

− νθ

(
x

x∗θ

)ηθ
)

=
y∗θ

ηθ − νθ

(
(ηθ − 1)

(
x

y∗θ

)νθ

+ (1− νθ)
(

x

y∗θ

)ηθ
)

we find that Fx∗θ ,y∗θ (x) is strictly convex on (x∗θ, y
∗
θ) (since ηθ > 1 when r > µ). Thus, F ′

x∗θ ,y∗θ
(x∗θ) = 0 <

F ′
x∗θ ,y∗θ

(x) < 1 = F ′
x∗θ ,y∗θ

(y∗θ) for all x ∈ (x∗θ, y
∗
θ). In light of these observations we find that the mapping

∆(x) = Fx∗θ ,y∗θ (x)−max(x, p) satisfies the conditions ∆(x∗θ) = ∆(y∗θ) = 0, and ∆′(x∗θ) = ∆′(y∗θ) = 0.

Combining these observations with the strict convexity of Fx∗θ ,y∗θ (x) on (x∗θ, y
∗
θ) then shows that

∆(x) > 0 for all x ∈ (x∗θ, y
∗
θ). Finally, since

(AθFx∗θ ,y∗θ )(x)− rFx∗θ ,y∗θ (x) =





−(r − µ)x x > y∗θ

0 x ∈ (x∗θ, y
∗
θ)

−rp x < x∗θ

we observe that Fx∗θ ,y∗θ (x) satisfies the sufficient variational inequalities guaranteeing that it consti-

tutes a majorant of the value Jθ(x) and, therefore, that Fx∗θ ,y∗θ (x) ≥ Jθ(x). This completes the proof

of our lemma.
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Lemma 3.1 characterize explicitly the value and exercise boundaries of the MGP-option in

the present case. As intuitively is clear the optimal exercise policy is such that the holder takes

the minimum guarantee at the lower boundary and the underlying stock at the upper boundary.

Between these two boundaries the value of the option dominates the exercise payoff and waiting is

optimal. The comparative static properties of the value and optimal policy are now summarized in

our next lemma.

Lemma 3.2. Assume that r > µ. Then increased volatility increases the value of the optimal

timing policy and expands the continuation region by increasing y∗θ and decreasing x∗θ. That is,

∂Jθ(x)/∂θ > 0, ∂y∗θ/∂θ > 0, and ∂x∗θ/∂θ < 0.

Proof. Denote the value of the MGP-option defined with respect to the less volatile dynamics

characterized by the coefficient θ̃ < θ as Jθ̃(x) and let

Aθ̃ =
1
2
θ̃2x2 d2

dx2
+ µx

d

dx
.

As was established in the proof of Lemma 3.1 the value Jθ(x) of the MGP-option is continuously

differentiable on R+, twice continuously differentiable on R+\{x∗θ, y∗θ}, convex on R+, and satisfies

the inequality Jθ(x) ≥ max(x, p) for all x ∈ R+. Moreover, since

(Aθ̃Jθ)(x)− rJθ(x) ≤ 1
2
(θ̃2 − θ2)x2J ′′θ (x) ≤ 0 for all x ∈ R+\{x∗θ, y∗θ}

by the convexity of the value Jθ(x) we notice that Jθ(x) constitutes a r-excessive majorant of the

payoff max(x, p) for the less volatile diffusion as well. Since Jθ̃(x) constitutes the least of these

majorants, we find that Jθ(x) ≥ Jθ̃(x).

Denote the continuation regions associated to the stopping problems as Cθ = {x ∈ R+ : Jθ(x) >

max(x, p)} and Cθ̃ = {x ∈ R+ : Jθ̃(x) > max(x, p)}. If x ∈ Cθ̃ then Jθ(x) ≥ Jθ̃(x) > max(x, p)

implying that x ∈ Cθ as well. Hence, Cθ̃ ⊆ Cθ and the alleged result follows.

Lemma 3.2 characterizes the sensitivity of the value and the optimal boundaries with respect

to changes in the volatility of the underlying dividend paying stock. As usually, our results indicate

that higher volatility postpones rational exercise by expanding the continuation region. Essentially,

the reason for this observation is that increased volatility raises the value of waiting while leaving
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the exercise payoff unchanged. The optimal boundaries are explicitly illustrated as functions of the

volatility coefficient θ in Figure 1 under the numerical assumptions that r = 0.035, µ = 0.02, and

p = 1.

0.1 0.2 0.3 0.4 0.5

Θ

1

2

3

4

5

x

xΘ
*

yΘ
*

VΘ HxL>maxHx,pL

VΘ HxL=x

VΘ HxL=p

Figure 1: The Exercise Boundaries as Functions of Volatility

Our main conclusion on the value of the δ-penalty MGP-option is now summarized in the

following.

Theorem 3.3. Assume that r > µ and define the mapping ∆θ : R+ 7→ R+ as ∆θ = Jθ(p)− p.

(A) If δ ≥ ∆θ then Vθ(x) = Jθ(x) = Fx∗θ ,y∗θ (x).

(B) If δ < ∆θ then

Vθ(x) =





x x ∈ [ȳθ,∞)

(p + δ) ϕ̂ȳθ
(x)

ϕ̂ȳθ
(p) + ȳθ

ψ̂p(x)

ψ̂p(ȳθ)
x ∈ (p, ȳθ)

p + δ x = p

p
ϕ̂p(x)
ϕ̂p(x̄θ) + (p + δ) ψ̂x̄θ

(x)

ψ̂x̄θ
(p)

x ∈ (x̄θ, p)

p x ∈ (0, x̄θ],

(13)

where the functions ϕ̂b(x) and ψ̂a(x) are defined as in (9) and (8), respectively, and the optimal
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exercise thresholds x̄θ and ȳθ constitute the unique roots of the optimality conditions

(1− νθ)
(

p

ȳθ

)ηθ

+ (ηθ − 1)
(

p

ȳθ

)νθ

= (ηθ − νθ)
(

p + δ

ȳθ

)
(14)

ηθ

(
p

x̄θ

)νθ

− νθ

(
p

x̄θ

)ηθ

= (ηθ − νθ)
(

1 +
δ

p

)
(15)

Proof. (A) Assume that δ ≥ ∆θ and consider the difference Dθ(x) = max(x, p) + δ − Jθ(x). It is

clear that

Dθ(x) =





−J ′θ(x) x < p

1− J ′θ(x) x > p

and, therefore, that p = argmin{Dθ(x)}. Hence, our assumption imply that Dθ(x) > Dθ(p) =

p + δ − Jθ(p) ≥ 0 for all x ∈ R+. Consequently, max(x, p) ≤ Jθ(x) ≤ max(x, p) + δ for all x ∈ R+.

Moreover, since Jθ(x) is r-excessive for the underlying diffusion Xt, we find that the proposed

value function satisfies the sufficient conditions (AθVθ)(x) ≤ rVθ(x) on R+ where the proposed

value is smaller than max(x, p) + δ and (AθVθ)(x) = rVθ(x) on the set (x∗θ, y
∗
θ) where the proposed

value is greater than max(x, p). Since this value is attainable by the admissible stopping policy

τ(x∗θ ,y∗θ ) = inf{t ≥ 0 : Xt 6∈ (x∗θ, y
∗
θ)}, we find that Vθ(x) = Jθ(x) = Fx∗θ ,y∗θ (x).

(B) Assume that δ < ∆θ. It is clear from part (A) that in that case there is a nonempty open

interval where Jθ(x) > max(x, p) + δ and, therefore, that Jθ(x) does not constitute the value of the

saddle point strategy. Given this observation, we now propose that the value function is r-harmonic

on a set (x̄θ, p) ∪ (p, ȳθ), satisfies the smooth fit conditions at the thresholds x̄θ, ȳθ, and coincides

with p + δ at p. More precisely, we propose that

(AθVθ)(x) = rVθ(x), Vθ(x̄θ) = p, V ′
θ(x̄θ) = 0

for all x ∈ (x̄θ, p) and that

(AθVθ)(x) = rVθ(x), Vθ(ȳθ) = ȳθ, V
′
θ(ȳθ) = 1

for all x ∈ (p, ȳθ). Solving these boundary value problems yield

Vθ(x) =
p

(ηθ − νθ)

[
ηθ

(
x

x̄θ

)νθ

− νθ

(
x

x̄θ

)ηθ
]

, (16)
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for all x ∈ (x̄θ, p) and

Vθ(x) =
ȳθ

(ηθ − νθ)

[
(1− νθ)

(
x

ȳθ

)ηθ

+ (ηθ − 1)
(

x

ȳθ

)νθ
]

, (17)

for all x ∈ (p, ȳθ). Invoking continuity at the boundary p then yields the conditions (14) and (15).

We now demonstrate that the conditions (14) and (15) have unique roots. Consider first the function

K1(x) = ηθ

(p

x

)νθ − νθ

(p

x

)ηθ − (ηθ − νθ)
(

1 +
δ

p

)
.

It is clear that K1(p) = −(ηθ − νθ)δ/p < 0, limx↓0 K1(x) = +∞, and

K ′
1(x) =

νθηθ

x

((p

x

)ηθ −
(p

x

)νθ
)

< 0.

Thus, equation K1(x) = 0 has a unique root x̄θ ∈ (0, p). Establishing that the function

K2(x) = (1− νθ)
(p

x

)ηθ

+ (ηθ − 1)
(p

x

)νθ − (ηθ − νθ)
(

p + δ

x

)

has a unique root ȳθ ∈ (p,∞) is completely analogous.

In light of these observations, it is now clear that the proposed value function is non-decreasing

and continuous on R+, continuously differentiable on R+\{p}, twice continuously differentiable on

R+\{x̄θ, p, ȳθ}, r-harmonic on (x̄θ, p)∪ (p, ȳθ), and r-superharmonic on (0, x̄θ)∪ (ȳθ,∞). Moreover,

since Vθ(x) = p on (0, x̄θ) and Vθ(x) = x on (ȳθ,∞), we find that the proposed value function is

convex on R+. Applying now the proof of part (ii) of Theorem 2 in Kyprianou (2004) and noticing

that the proposed value is attained by the admissible (Markov time) stopping policy τ∗ = inf{t ≥
0 : Xt 6∈ (x̄θ, p) ∪ (p, ȳθ)} then completes the proof of the alleged result.

Theorem 3.3 characterizes the value and optimal exercise policy of the δ-penalty MGP-option.

According to Theorem 3.3 there is a critical penalty above which the issuer is no longer prepared to

exercise the embedded costly cancelation option and the value coincides with the value of the MGP-

option in the nonstrategic setting. However, below the critical penalty the issuer uses the cancelation

option and terminates the contract as soon as the underlying value coincides with the minimum

guarantee. As in the non-strategic setting, the exercise policy of the holder is characterized by two

boundaries. The value functions in the two cases arising in Theorem 3.3 are explicitly illustrated

in Figure 2 under the assumptions that r = 0.035, µ = 0.02, p = 1, and σ = 0.2 (implying that

∆0.2 = 0.092).
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Figure 2: The Value Functions (uniform curves) and Exercise Payoffs (dashed curves)

An interesting implication of our observations characterizing the one-to-one nature of the critical

penalty ∆θ as a function of volatility is now summarized in the following.

Corollary 3.4. Assume that r > µ. Then, ∆θ is a monotonically increasing function of volatility,

limθ↓0 ∆θ = 0, and limθ→∞∆θ = ∞. Hence, for any given fixed penalty δ ∈ R+ there is a unique

volatility coefficient θ = ∆−1
δ for which the optimal equilibrium strategy and its value can then be

described as in part (A) of Theorem 3.3 as long as θ ≤ ∆−1
δ and as in part (B) of Theorem 3.3

whenever θ > ∆−1
δ .

Proof. It is clear that under our assumptions we have ηθ > 1, νθ < 0, limθ→∞ νθ = 0, and

limθ→∞ ηθ = 1. These observations imply that x∗θ ↓ 0 and y∗θ ↑ ∞ as θ → ∞. Hence, we also

observe that Fx∗θ ,y∗θ (x) ↑ ∞ as θ → ∞. The alleged result is now a direct implication of Theorem

3.3.

Corollary 3.4 demonstrates that in the present case the the critical penalty ∆θ constitutes

a bijection as a function of volatility. Thus, for any predetermined penalty δ there is a unique

volatility coefficient θ = ∆−1
δ for which the embedded cancelation option becomes valuable for the

issuer as soon as volatility exceeds this value. This finding is interesting since it proves that increased

volatility does not only increase the value of the optimal exercise policy for the holder, it increases

the value of the embedded cancelation option as well. The critical penalty is illustrated explicitly

in Figure 3 under the assumptions that r = 0.035, µ = 0.03, and p = 1.

11
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Figure 3: The Critical Penalty

4 The General Case

Having considered the valuation of the δ-penalty MGP-option in the standard case where the un-

derlying value dynamics is characterized as a standard geometric Brownian motion, we now proceed

in our analysis and consider the value of this contract in a more general setting as well. Along

the lines of our previous observations, we first consider the underlying nonstrategic MGP-option

and its value, and then present our main conclusions on the δ-penalty MGP-option in terms of this

contingent contract. In accordance with our previous analysis, the chosen approach is based on the

determination of the functional (6). In the present case, it can be expressed explicitly as in (7)

subject to the obvious modification of the functionals ψ̂a(x) and ϕ̂b(x) which in the present case

read as

ψ̂a(x) = ψθ(x)− ψθ(a)
ϕθ(a)

ϕθ(x) (18)

ϕ̂b(x) = ϕθ(x)− ϕθ(b)
ψθ(b)

ψθ(x). (19)

Before analyzing the considered δ-penalty MGP-option, we first present two auxiliary results extend-

ing previous findings to the present case. We first establish that the monotonicity of the appreciation

rate and the boundary behavior of the underlying diffusion are sufficient conditions for the convexity

of the minimal r-excessive mappings ψθ(x) and ϕθ(x). This task is accomplished in the following.

12



Lemma 4.1. Assume that the net appreciation rate α(x) = µ(x) − rx is non-increasing and that

the boundaries 0 and ∞ are natural for Xt. Then, the minimal r-harmonic mappings ψθ(x) and

ϕθ(x) are strictly convex on R+ and increased volatility raises or leaves unchanged the value of the

functional

Ex

[
e−rτa

]
=





ψθ(x)
ψθ(a) x ≤ a

ϕθ(x)
ϕθ(a) x ≥ a

(20)

for any 0 < a < ∞ and x ∈ R+.

Proof. Consider first the increasing function ψθ(x). It is clear that since ψθ(x) satisfies the ordinary

differential equation (Aθψθ)(x) = rψθ(x) we have

1
2
θ2σ2(x)

ψ′′θ (x)
S′θ(x)

= r

(
ψθ(x)
S′θ(x)

− x
ψ′θ(x)
S′θ(x)

)
− α(x)

ψ′θ(x)
S′θ(x)

. (21)

Standard differentiation yields

d

dx

(
ψθ(x)
S′θ(x)

− x
ψ′θ(x)
S′θ(x)

)
= α(x)ψθ(x)m′

θ(x) (22)

which, in turn, implies that
(

ψθ(x)
S′θ(x)

− x
ψ′θ(x)
S′θ(x)

)
=

(
ψθ(a)
S′θ(a)

− a
ψ′θ(a)
S′θ(a)

)
+

∫ x

a
α(t)ψθ(t)m′

θ(t)dt (23)

where a ∈ (0, x) is arbitrary. Plugging this finding in (21) and invoking the canonical form

ψθ(x)
S′θ(x)

− ψθ(a)
S′θ(a)

= r

∫ x

a
ψθ(t)m′

θ(t)dt (24)

then shows that (21) can be re-expressed as

1
2
θ2σ2(x)

ψ′′θ (x)
S′θ(x)

= r

∫ x

a
(α(t)− α(x))ψθ(t)m′

θ(t)dt + r
ψθ(a)
S′θ(a)

− (µ(x)− r(x− a))
ψ′θ(a)
S′θ(a)

.

Invoking the monotonicity of ψθ(x) and α(x) then yields the inequality

1
2
θ2σ2(x)

ψ′′θ (x)
S′θ(x)

> −µ(x)
ψ′θ(a)
S′θ(a)

.

Letting a ↓ 0 and invoking the boundary condition ψ′θ(a)/S′θ(a) ↓ 0 as a ↓ 0 then implies that

ψ′′θ (x) > 0 for all x ∈ R+. Hence, ψθ(x) is strictly convex on R+. Establishing the strict convexity of

ϕθ(x) is entirely analogous. The positivity of the sign of the relationship between increased volatility

and the value of the functional (20) follows from Corollary 3 in Alvarez (2003).
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Lemma 4.1 states a set of conditions under which the minimal r-harmonic mappings for the

underlying diffusion are strictly convex and, consequently, under which increased volatility unam-

biguously increases the values of the contingent contracts guaranteeing to the holder one dollar at

the first time the underlying hits a predetermined boundary y. It is worth noticing that Lemma

4.1 extends part of the results of Alvarez (2003) since no integrability conditions are needed for the

verification of convexity; only the local behavior of the infinitesimal characteristics count when the

boundaries of the state space are natural for the underlying dynamics characterizing the value of the

dividend paying stock. Our main finding on the MGP-option in the absence of strategic interaction

is now summarized in the following.

Theorem 4.2. Assume that the net appreciation rate α(x) = µ(x)− rx is non-increasing and non-

positive and that 0 and ∞ are natural boundaries for the underlying diffusion Xt. Then, the value

of the generalized MGP-option reads as

Jθ(x) = Fx∗θ ,y∗θ (x) =





x x ∈ [y∗θ ,∞)

p
ϕ̂y∗

θ
(x)

ϕ̂y∗
θ
(x∗θ) + y∗θ

ψ̂x∗
θ
(x)

ψ̂x∗
θ
(y∗θ )

x ∈ (x∗θ, y
∗
θ)

p, x ∈ (0, x∗θ),

(25)

where the optimal exercise boundaries x∗, y∗ constitute the unique roots of equations

ϕ′θ(y
∗
θ)

S′θ(y
∗
θ)

y∗θ −
ϕθ(y∗θ)
S′θ(y

∗
θ)

= p
ϕ′θ(x

∗
θ)

S′θ(x
∗
θ)

(26)

ψ′θ(y
∗
θ)

S′θ(y
∗
θ)

y∗θ −
ψθ(y∗θ)
S′θ(y

∗
θ)

= p
ψ′θ(x

∗
θ)

S′θ(x
∗
θ)

. (27)

Proof. We first establish that if a pair satisfying the optimality conditions exist, then the resulting

candidate value constitutes a r-excessive majorant of the underlying exercise payoff. To this end, we

first notice that the proposed value function is continuously differentiable on R+, twice continuously

differentiable on R+\{x∗θ, y∗θ}, r-harmonic on (x∗θ, y
∗
θ), r-superharmonic on (0, x∗θ) ∪ (y∗θ ,∞), and

satisfies the conditions |F ′′
x∗θ ,y∗θ

(x∗θ±)| < ∞ and |F ′′
x∗θ ,y∗θ

(y∗θ±)| < ∞. Hence, Fx∗θ ,y∗θ (x) is r-excessive

for the underlying diffusion Xt. We now prove that it dominates the underlying exercise payoff as

well. Since Fx∗θ ,y∗θ (x) = max(x, p) on (0, x∗θ] ∪ [y∗θ ,∞) we now analyze the behavior of the mapping

H1(x) =
Fx∗θ ,y∗θ (x)−max(x, p)

ψθ(x)

14



on the continuation set (x∗θ, y
∗
θ). It is clear that we have H1(x∗θ) = H1(y∗θ) = 0 and H ′

1(x
∗
θ) =

H ′
1(y

∗
θ) = 0. Moreover, since the proposed value can be expressed on (x∗θ, y

∗
θ) as Fx∗θ ,y∗θ (x) = c1ψθ(x)+

c2ϕθ(x), where

c1 = − pϕ′θ(x
∗
θ)

BS′θ(x
∗
θ)

=
ϕθ(y∗θ)− ϕ′θ(y

∗
θ)y

∗
θ

BS′θ(y
∗
θ)

and

c2 =
pψ′θ(x

∗
θ)

BS′θ(x
∗
θ)

=
ψ′θ(y

∗
θ)y

∗
θ − ψθ(y∗θ)

BS′θ(y
∗
θ)

,

we observe that

H ′
1(x) =





S′θ(x)

ψ2
θ(x)

(
ψ′θ(x)x−ψθ(x)

S′θ(x)
− ψ′θ(y∗θ )y∗θ−ψθ(y∗θ )

S′θ(y∗θ )

)
x ∈ (p, y∗θ)

pS′θ(x)

ψ2
θ(x)

(
ψ′θ(x)

S′θ(x)
− ψ′θ(x∗θ)

S′θ(x∗θ)

)
x ∈ (x∗θ, p).

Applying (22) and (24) then show that H1(x) is increasing on (x∗θ, p) and decreasing on (p, y∗θ). Con-

sequently, we find that Fx∗θ ,y∗θ (x) > max(x, p) for all (x∗θ, y
∗
θ). Hence, the proposed value constitutes

a r-excessive majorant of the payoff max(x, p) for the underlying diffusion Xt. Since the value Jθ(x)

is the least of these majorants, we observe that Fx∗θ ,y∗θ (x) ≥ Jθ(x). However, since the proposed

value is attained by applying the admissible stopping strategy τ∗ = inf{t ≥ 0 : Xt 6∈ (x∗θ, y
∗
θ)} we

find that Fx∗θ ,y∗θ (x) ≤ Jθ(x) as well.

It remains to establish that the ordinary first order conditions (26) and (27) have a unique root.

To this end, consider the mappings

l1(x, y) =
ϕ′θ(y)
S′θ(y)

y − ϕθ(y)
S′θ(y)

− p
ϕ′θ(x)
S′θ(x)

(28)

l2(x, y) =
ψ′θ(y)
S′θ(y)

y − ψθ(y)
S′θ(y)

− p
ψ′θ(x)
S′θ(x)

. (29)

It is clear that l1(y, y) < 0 and limx↓0 l1(x, y) = +∞ (since 0 is natural for Xt) for any y ∈ (p,∞).

Since (∂l1/∂x)(x, y) = −rpϕθ(x)m′
θ(x) < 0 we find that equation l1(x, y) = 0 has a unique root x̃y

satisfying l1(x̃y, y) = 0 for any y ∈ (p,∞). Moreover, implicit differentiation yields

dx

dy

∣∣∣
l1(x,y)=0

= −α(y)ϕθ(y)m′
θ(y)

rpϕθ(x)m′
θ(x)

> 0.

Analogously, we find that l2(x, x) < 0 for any x ∈ (0, p). Applying now equation (23) and invoking

15



the mean value theorem of integral calculus yields

ψ′θ(y)
S′θ(y)

y − ψθ(y)
S′θ(y)

=
ψ′θ(x)
S′θ(x)

x− ψθ(x)
S′θ(x)

−
∫ y

x
α(t)ψθ(t)m′

θ(t)dt

=
ψ′θ(x)
S′θ(x)

x− ψθ(x)
S′θ(x)

− α(ξ)
r

[
ψ′θ(y)
S′θ(y)

− ψ′θ(x)
S′θ(x)

]

where ξ ∈ (x, y). Letting y → ∞ then shows that limy→∞ l2(x, y) = +∞ (since ∞ is natural for

Xt). Since (∂l2/∂y)(x, y) = −α(y)ψθ(y)m′
θ(y) > 0 we find that equation l2(x, y) = 0 has a unique

root ỹx satisfying l2(x, ỹx) = 0 for any x ∈ (0, p). Moreover, implicit differentiation yields

dy

dx

∣∣∣
l2(x,y)=0

= − rpψθ(x)m′
θ(x)

α(y)ψθ(y)m′
θ(y)

> 0.

Combining these observations show that

dy

dx

∣∣∣
l2(x,y)=0

=
[
ψθ(x)ϕθ(y)
ψθ(y)ϕθ(x)

]
dy

dx

∣∣∣
l1(x,y)=0

<
dy

dx

∣∣∣
l1(x,y)=0

demonstrating that if a pair x∗θ < y∗θ satisfying the first order conditions (26) and (27) exists, it is

unique. In order to demonstrate that such a pair indeed exists, we now show that ỹx and x̃y have

an interception point (x∗θ, y
∗
θ) ∈ (0, p)× (p,∞). Consider first the roots of the equations l1(p, y) = 0

and l2(p, y) = 0. Applying (22) yields

l1(p, y) =
∫ y

p
(rt− µ(t))ϕθ(t)m′

θ(t)dt− ϕθ(p)
S′θ(p)

l2(p, y) =
∫ y

p
(rt− µ(t))ψθ(t)m′

θ(t)dt− ψθ(p)
S′θ(p)

.

Denote as y∗2 the root of l2(p, y) = 0. Then the monotonicity of the mapping ψθ(t)/ϕθ(t) yields

ψθ(p)
S′θ(p)

=
∫ y∗2

p
(rt− µ(t))ψθ(t)m′

θ(t)dt ≥ ψθ(p)
ϕθ(p)

∫ y∗2

p
(rt− µ(t))ϕθ(t)m′

θ(t)dt

proving that l1(p, y∗2) ≤ 0 and, therefore, that y∗1 ≥ y∗2, where y∗1 denotes the root of l1(p, y) = 0.

Analogously, applying the canonical identity (24) shows that

l1(x, p) = rp

∫ p

x
ϕθ(t)m′

θ(t)dt− ϕθ(p)
S′θ(p)

l2(x, p) = rp

∫ p

x
ψθ(t)m′

θ(t)dt− ψθ(p)
S′θ(p)

.

Denote as x∗2 the root of l2(x∗2, p) = 0. Then the monotonicity of the mapping ψθ(t)/ϕθ(t) yields

ψθ(p)
S′θ(p)

= rp

∫ p

x∗2
ψθ(t)m′

θ(t)dt ≤ ψθ(p)
ϕθ(p)

rp

∫ p

x∗2
ϕθ(t)m′

θ(t)dt
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proving that l1(x∗2, p) ≥ 0 and, therefore, that x∗1 ≥ x∗2, where x∗1 denotes the root of l1(x, p) = 0.

Combining these inequalities then demonstrate that x̃y and ỹx have a unique interception on the

set ∈ (0, p)× (p,∞) which completes the proof of our theorem.

Theorem 4.2 extends the results of Lemma 3.1 to a general diffusion setting. Along the lines

of the Lemma 3.1 we again observe that the optimal policy is characterized by two boundaries at

which the value of an exercise policy which is characterized as a first exit time from an open interval

is maximized. The comparative static properties of the value and the optimal exercise strategy are

now summarized in the following.

Theorem 4.3. Assume that the net appreciation rate α(x) = µ(x)− rx is non-increasing and non-

positive and that 0 and ∞ are natural boundaries for the underlying diffusion Xt. Then, the value

function Jθ(x) is convex on R+ and strictly convex on (x∗θ, y
∗
θ). Moreover, higher volatility increases

the value and expands the continuation region where exercising the option is suboptimal. That is,

∂Jθ(x)/∂θ > 0, ∂x∗θ/∂θ < 0, and ∂y∗θ/∂θ > 0.

Proof. As was established in the proof of Theorem 4.2, the value of the MGP-option reads on (x∗θ, y
∗
θ)

as

Jθ(x) =
p

BS′θ(x
∗
θ)

[
ψ′θ(x

∗
θ)ϕθ(x)− ϕ′θ(x

∗
θ)ψθ(x)

]
.

Since a positive affine combination of two strictly convex functions is strictly convex, we find that

the alleged convexity of Jθ(x) follows from Lemma 4.1. Establishing now that increased volatility

increases the value and expands the continuation region is analogous with the proof of Lemma

3.2.

Theorem 4.3 extends the findings of Lemma 3.2 to the general setting. Interestingly, we observe

that the sign of the relationship between higher volatility and the optimal policy is a process specific

property which is mainly based on the behavior of the net appreciation rate of the underlying

dynamics.

Having considered the MGP-option in the general setting we are now in position to proceed into

the analysis of the δ-penalty MGP-option. Our main conclusion on the value of this game option is

now summarized in the following.
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Theorem 4.4. Assume that the net appreciation rate α(x) = µ(x) − rx is non-increasing and

non-positive, that 0 and ∞ are natural boundaries for the underlying diffusion Xt, and define the

mapping ∆θ : R+ 7→ R+ as ∆θ = Jθ(p)− p.

(A) If δ ≥ ∆θ then Vθ(x) = Jθ(x) = Fx∗θ ,y∗θ (x).

(B) If δ < ∆θ then

Vθ(x) =





x x ∈ [ȳθ,∞)

(p + δ) ϕ̂ȳθ
(x)

ϕ̂ȳθ
(p) + ȳθ

ψ̂p(x)

ψ̂p(ȳθ)
x ∈ (p, ȳθ)

p + δ x = p

p
ϕ̂p(x)
ϕ̂p(x̄θ) + (p + δ) ψ̂x̄θ

(x)

ψ̂x̄θ
(p)

x ∈ (x̄θ, p)

p x ∈ (0, x̄θ],

(30)

where the functions ψ̂a(x) and ϕ̂b(x) are defined as in (18) and (19), respectively, and the

optimal exercise thresholds x̄θ and ȳθ constitute the unique roots of the optimality conditions

p
ψ′θ(x̄θ)
S′θ(x̄θ)

ϕθ(p)− p
ϕ′θ(x̄θ)
S′θ(x̄θ)

ψθ(p) = (p + δ) B (31)

ϕθ(ȳθ)− ϕ′θ(ȳθ)ȳθ

S′θ(ȳθ)
ψθ(p) +

ψ′θ(ȳθ)ȳθ − ψθ(ȳθ)
S′θ(ȳθ)

ϕθ(p) = (p + δ) B (32)

Proof. (A) It is clear from Theorem 4.2 that the proposed value constitutes the minimal r-excessive

majorant of the payoff max(x, p) for the diffusion Xt. Moreover, as was observed in the proof of

Theorem 3.3 Jθ(x) ≤ p + δ for all x ∈ R+ as long as δ ≥ Jθ(p)− p in this case as well.

(B) We first establish that the first order conditions (31) and (32) have unique roots. To this end,

define the mappings K1 : (0, p) 7→ R and K2 : (p,∞) 7→ R as

K1(x) = p
ψ′θ(x)
S′θ(x)

ϕθ(p)− p
ϕ′θ(x)
S′θ(x)

ψθ(p)− (p + δ) B

K2(x) =
ϕθ(x)− ϕ′θ(x)x

S′θ(x)
ψθ(p) +

ψ′θ(x)x− ψθ(x)
S′θ(x)

ϕθ(p)− (p + δ) B.

It is clear that K1(p) = −δB < 0, K1(x) ↑ +∞ as x ↓ 0 since ϕ′θ(x)/S′θ(x) ↓ −∞ when 0 is a natural

boundary, and K ′
1(x) = −rpψθ(p)ϕ̂p(x)m′

θ(x) < 0 for all x ∈ (0, p). Hence, equation K1(x) = 0 has

a unique root x̄θ ∈ (0, p). Analogously, we observe that K2(p) = −Bδ < 0 and

K ′
2(x) = −(µ(x)− rx)ϕθ(p)ψ̂p(x)m′

θ(x) > 0

18



for all x ∈ (p,∞). Hence, the mean value theorem implies that

K2(x) =
∫ x

p
(rt− µ(t))ϕθ(p)ψ̂p(t)m′

θ(t)dt−Bδ = ϕθ(p)
(rξ − µ(ξ))

r

(
ψ̂′p(x)
S′θ(x)

− ψ̂′p(p)
S′θ(p)

)
−Bδ

where ξ ∈ (p, x). Letting x ↑ ∞ and applying the result that ψ′θ(x)/S′θ(x) ↑ ∞ and ϕ′θ(x)/S′θ(x) ↑ 0

as x ↑ ∞ demonstrates that K2(x) ↑ ∞ as x ↑ ∞. Thus, equation K2(x) = 0 has a unique root on

(p,∞). In light of these findings, we observe as in Theorem 3.3 that the proposed value function

is continuous on R+, continuously differentiable on R+\{p}, twice continuously differentiable on

R+\{x̄θ, p, ȳθ}, r-harmonic on (x̄θ, p)∪ (p, ȳθ), and r-superharmonic on (0, x̄θ)∪ (ȳθ,∞). Moreover,

since Vθ(x) = p on (0, x̄θ) and Vθ(x) = x on (ȳθ,∞), we again observe that the proposed value

function is convex on R+. Applying now the proof of part (ii) of Theorem 2 in Kyprianou (2004)

and noticing that the proposed value is attained by the admissible stopping policy τ∗ = inf{t ≥ 0 :

Xt 6∈ (x̄θ, p) ∪ (p, ȳθ)} then completes the proof of our theorem.

In light of the findings of our Theorem 4.3 it is clear that if the conditions of Theorem 4.4

are satisfied then the critical penalty ∆θ is monotonically increasing as a function of volatility.

Unfortunately, it is difficult to characterize the limits limθ↓0 ∆θ and limθ→∞∆θ in the general setting.

Numerical computations in explicitly parameterized models seem to indicate that the conclusions

of Corollary 3.4 are typically satisfied in a general setting as well. Therefore, we conjecture that for

any given fixed penalty δ ∈ R+ there is a unique volatility coefficient θ = ∆−1
δ in a general setting

as well.

4.1 Explicit Illustration

In order to illustrate our general findings explicitly, assume now that the underlying dynamics are

characterized by the logistic stochastic differential equation

dXt = µXt(1− γXt)dt + θXtdWt, X0 = x.

In this case the minimal r-harmonic mappings (i.e. the fundamental solutions) read as

ψθ(x) = xηθM(ηθ, 1 + ηθ − νθ, 2µγx/θ2)

ϕθ(x) = xνθM(νθ, 1− ηθ + νθ, 2µγx/θ2),
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θ 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

x∗θ 1.9602 1.8488 1.6865 1.4984 1.3064 1.1254 0.9636 0.8236

y∗θ 2.055 2.2216 2.5028 2.9019 3.419 4.0506 4.7891 5.6238

∆θ 0.0115 0.045 0.0976 0.1652 0.2435 0.328 0.4151 0.5021

∆θ/p 0.0058 0.0225 0.0488 0.0826 0.1217 0.164 0.2076 0.2511

Table 1: The Optimal Boundaries and the Critical Penalty

where ηθ > 0 and νθ < 0 are defined as in Section 3 and M denotes the Kummer confluent

hypergeometric function. If r > µ, then these solutions are strictly convex and the conditions of

our Theorem 4.4 are satisfied and, therefore, the MGP-option has a well-defined value Jθ(x) as well

as an exercise strategy which is characterized by the stopping boundaries x∗θ and y∗θ . The optimal

exercise boundaries as well as the critical penalty are numerically illustrated for various volatilities

in Table 1 under the numeric assumptions that r = 0.04, µ = 0.03, γ = 0.1, and p = 2.

It is worth noticing that in the present example the increasing fundamental solution ψθ(x) is

locally concave on a neighborhood of the origin as long as r ≤ µ and that there is a unique threshold

such that ψθ(x) is strictly convex for all states above that threshold. Hence, an optimal policy may

exist even when r ≤ µ. The value of the optimal exercise policy is illustrated in that case in Figure

4 under the numeric assumptions that r = 0.03, µ = 0.04, γ = 0.1, σ = 0.1, and p = 2. The optimal

boundaries and the critical penalty are, in turn, numerically illustrated for various volatilities in

Table 2 under the numeric assumptions that r = 0.03, µ = 0.04, γ = 0.1, and p = 2. Given the

local positivity of the net appreciation rate on the set (0, (µ − r)/(µγ)) it is clear that now the

optimal policy is more sensitive with respect to changes in the volatility coefficient θ. Interestingly,

our results indicate that the ratio between the critical penalty and the minimum guaranteed sum at

low volatilities is low (1.97%). However, as the volatility coefficient becomes higher the embedded

cancelation option of the issuer becomes more valuable and the ratio between the critical penalty

and the minimum guaranteed sum becomes more significant (37.52%).
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Figure 4: The Values (uniform curves) and Exercise Payoffs (dashed curves)

θ 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

x∗θ 1.9054 1.7077 1.4662 1.2294 1.0203 0.8452 0.7027 0.5879

y∗θ 2.6015 3.0293 3.7028 4.5103 5.4151 6.3932 7.4264 8.501

∆θ 0.0394 0.1157 0.2167 0.3282 0.4414 0.5512 0.6546 0.7505

∆θ/p 0.0197 0.0578 0.1083 0.1641 0.2207 0.2756 0.3273 0.3752

Table 2: The Optimal Boundaries and the Critical Penalty

5 Conclusions

We considered the valuation and optimal exercise policy of a contingent contract guaranteeing the

holder a minimum monetary payment at exercise and a costly right to terminate the contract before

expiry to the issuer in the case where the value of the underlying dividend-paying asset follows a

one dimensional but otherwise general time homogenous diffusion. Along the lines of the pioneering

work by Kifer (2000) and the subsequent study by Kyprianou (2004), the considered contingent

contract was modeled as a δ-penalized version of the minimum guaranteed payment option which

was originally analyzed in Guo and Shepp (2001) in a non-strategic setting based on geometric

Brownian motion. We presented a set of ordinary first order conditions characterizing the optimal

boundaries and stated a set of typically satisfied conditions under which the pair of optimality

conditions admit a unique root. The resulting saddle point strategy and value of the game option

was then explicitly expressed in terms of the exercise boundaries. Interestingly, our results indicate

that the sign of the relationship between increased volatility and the value of the option is positive in
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this case as well and that higher volatility decelerates rational exercise by expanding the continuation

region where waiting is optimal.

There are several directions towards which our analysis could be extended. First, even though

the assumed perpetuity of the contract is acceptable in the cases where the maturities are relatively

long (say 30-40 years) it is not clear whether our findings and main conclusions would hold in a

finite horizon setting. Previous studies of game options and Dynkin games indicate that the optimal

policies are very sensitive with respect to the length of the time horizon and, thus, it may very well

be the case that at least part of our conclusions would no longer hold in the finite horizon case. A

second interesting extension (from the point of view of risk management) of our analysis would be

to add spectrally negative jumps into the underlying dynamics. Such an extension would provide

valuable information on the impact of downside risk on the optimal exercise policies of both the

issuer and the holder. Both of these extensions are outside the scope of the present formulation and

left for future research.
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