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ABSTRACT

We study rotation programs within the standard implementation frame-
work under complete information. A rotation program is a myopic
stable set whose states are arranged circularly, and agents can effec-
tively move only between two consecutive states. We provide charac-
terizing conditions for the implementation of efficient rules in rotation
programs. Moreover, we show that the conditions fully characterize the
class of implementable multi-valued and efficient rules.
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1 Introduction
An economic department must distribute the administrative load among its

members. However, due to the workload most want to avoid these task. This
impasse is often resolved by implementing a rotating program : each professor
will take a task for some time.

Rotation programs are widely used. A prominent example is given by the
business practice of job rotations, which consists of periodically rotating the
jobs assigned to the employees throughout their employment. This practice has
been used in many industries for a wide array of employees, from factory line
workers to executives (Osterman (1994, 2000), Gittleman, Horrigan and Joyce
(1998)) and for different reasons.1 Furthermore, rotation programs have been
practiced in managing common-pool resources as an alternative to quota and
lotteries. In many areas of the world, rotating groups are formed for farming,
grazing, gaining access to water, and allocating fishing spots (Ostrom (1990),
Berkes (1992), Sneath (1998)). Recently, Ely, Galeotti and Jakub (2021) show
that rotation schemes can be used to prevent the spread of infections. In this
view, a rotation scheme is a mechanism to shape social interactions to minimize
the risk of contagion. Further, as illustrated by the problem of task allocation
in the department, rotation programs can help achieve fairness in assignment
problems. Indeed, we human beings tend to solve these kinds of conflicts either
by using lotteries or implementing rotation schemes. However, the literature on
assignment problems focuses mainly on randomization (Hofstee, 1990; Bogo-
molnaia and Moulin , 2001; Budish, Che, Kojima and Milgrom, 2013), though
experimental evidence (Eliaz and Rubinstein, 2014; Andreoni, Aydin, Barton,
Bernheim, and Naecker, 2020) shows that lotteries do not avoid ex-post envy.

In this paper, we propose an implementation approach to the study of rota-
tion programs in which agents can rotate continuously among Pareto efficient

1From one side, employees who rotate accumulate more human capital because they are
exposed to a broader range of experiences. On another side, the employer itself learns more
about its employees if it can observe how they perform at different jobs (Arya and Mittendorf,
2004).
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allocations. Therefore, our challenge lies in designing a mechanism (i.e., game
form) in which the behavior of agents always coincides with the recommenda-
tion given by a social choice rule (SCR). If such a mechanism exists, the SCR is
implementable.

The first difficulty in adopting this approach concerns the choice of the solu-
tion concept. Most of the game-theoretical solutions used in literature, such as
the core, the (strong) Nash equilibrium, and the stable set (von Neumann and
Morgenstern, 1944), satisfy a property called internal stability. Roughly speak-
ing, a set of outcomes is internally stable if it is free of inner contradictions, i.e.,
for every outcome in the set, no agent or group can directly move to another out-
come of the set and be better off. However, this property is incompatible with
our objective to study how to rotate positions among agents. Thus, a theory of
implementation in rotation programs cannot rely on solutions that satisfy inter-
nal stability. Internal stability is relaxed in solution concepts that are modifica-
tions, extensions, or generalizations of the stable set. One of the most promi-
nent is the “absorbing set.” As Inarra, Kuipers and Oilazola (2005) point out,
the notion of absorbing sets appears in the literature under different names and
settings. Kalai, Pazner, and Schmeidler (1976) study the “admissible set” in var-
ious bargaining situations, and Shenoy (1979) defines the “elementary dynamic
solution” for coalitional games. More recently, Jackson and Watts (2002) study
the “closed cycle” for network formation and Inarra, Larrea and Molis (2013)
study the absorbing set for roommate problems. Finally, the myopic stable set
(MSS), defined by Demuynck, Herings, Saulle and Seel (2019a) for a general
class of games, includes all previous notions of absorbing sets. The MSS is the
smallest set of states such that the following properties are satisfied: 1) There
are no profitable deviations from a state inside the set to a state outside the set;
and 2) for each state outside the set, red there is a sequence of agents’ devia-
tions converging to the set. Thus, the MSS is a valid prediction of agents’ play,
though it violates internal stability because it allows deviations within the set.
Furthermore, the prediction offered by the MSS is robust in the following terms:
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Though agents may reach an agreement on a state outside the set, a sequence of
myopic improvements will bring them back to the MSS. For these reasons, we
adopt the MSS as our solution concept.

From a methodological point of view, we exploit a novel implementation
technique, named implementation via rights structures (Section 2), recently in-
troduced by Koray and Yildiz (2018). A rights structure formalizes power dis-
tribution within society. Thus, differently from classical mechanism design, our
design exercise consists of allocating rights to agents such that their behavior
always coincides with the recommendation given by an SCR. We follow this ap-
proach for three reasons. Firstly, a persistent critique in economic design is that
canonical mechanisms for implementing socially desirable outcomes have un-
natural features (Jackson, 1992). Typically, canonical mechanisms are complex
and difficult to explain in natural terms since they rely on tail-chasing construc-
tions. By contrast, a rights structure can be easily explained to agents. Sec-
ondly, though rights structures do not model time, they effectively describe all
the paths generated by agents’ interactions. Finally, rights structures suit very
well the environment of the MSS. Indeed, a rights structure together with a pref-
erence profile returns a social environment (Chwe, 1994), which is the natural
setting of the MSS (Demuynck, Herings, Saulle and Seel, 2019a).

However, implementation in MSS cannot always guarantee the order of rota-
tion. Indeed, it cannot exclude the possibility that a rotation gets stuck in a cycle
which rules out some agents from the process. To solve this drawback, Section 4
introduces the notion of implementation in rotation programs. Implementation in
rotation programs is a particular kind of implementation in MSS, in which every
cycle generated within the MSS needs to be a rotation scheme.

Synopsis

The paper builds upon three blocks: implementation via rights structures
(IRS), myopic stable sets (MSS) and rotation programs (RP). The paper’s con-
tribution lies in investigating the implications which stem from either [IRS X
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IRS

MSS RP

MSS] or [IRS XMSS XRP ]. This is depicted in the Venn diagram above.
Section 2 provides the model. Section 3 studies implementation in MSS via

rights structures [IRS XMSS]. We show that indirect monotonicity is sufficient
for implementation of efficient SCRs in MSS via a finite rights structure.2 In-

direct monotonicity is weaker than Maskin monotonicity and, for the finite case,
our result encompasses implementation in core and generalized stable sets (van
Deemen, 1991; Page and Wooders, 2009). Moreover, for marriage problems
(Knuth, 1976) and a class of exchange economies with property rights (Bal-
buzanov and Kotowski, 2019), we show that the set of stable outcomes is im-
plementable in MSS. It is worth stressing here that this implementation is ob-
tained by devising a rights structure endowed with well-defined convergence
properties (Appendix A). In Section 4, we study implementation in rotation
programs via rights structures as a particular case of implementation in MSS
[IRS XMSS X RP ]. We identify a necessary condition, named rotation mono-

tonicity, for implementation in rotation programs of efficient SCRs. When a
multi-valued SCR describes the planner’s goal, rotation monotonicity fully char-
acterizes the class of implementable SCRs.3 Finally, Section 5 studies two classes
of assignment problems where efficient SCRs are implementable in rotation pro-
grams. Assignment problems in which agents share the same best/worst out-
come, and assignment problems in which the planner knows that two agents
have the same top-outcome. All proofs are relegated to the Appendix B.

2A finite rights structure is a rights structure in which the set of states is finite.
3See, for instance, Mukherjee, Muto, Ramaekers, and Sen (2019).
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Related Literature

To the best of our knowledge, we are the first to study the economic design of
rotation programs in an implementation framework that allows agents to rotate
among Pareto efficient allocations continuously. The previous contributions that
come closes to what we are doing are Yu and Zhang (2020a) and Yu and Zhang
(2020b). In contrast to us, they study properties of one particular mechanism for
task rotation, while we ask what kind of rotation schemes can be implemented
in general.

Our contribution is also in line with Arya and Mittendorf (2004), who study
job rotations within a principal-agent framework. In particular, they identify
conditions under which job rotation and specialization are each optimal. In
contrast to us, their job rotation scheme does not guarantee the circulation of
employees through jobs.

Finally, our paper contributes to the literature on implementation via rights
structure (Koray and Yildiz, 2018, 2019; Korpela, Lombardi and Vartiainen, 2019,
2020) and it is broadly related to the literature on assignments problems (Shap-
ley and Shubik, 1971; Roth and Sotomayor, 1990; Abdulkadiroğlu and Sönmez,
1998).

2 The Setup
We consider a finite (nonempty) set of agents, denoted by N , and a finite

(nonempty) set of alternatives, denoted by Z. We endow Z with a metric d̂. For
every setA, the power set ofA is denoted by A and A0 ” A´ t∅u is the set of all
nonempty subsets of A. Each element K of N0 is called a coalition. A preference

orderingRi is a complete and transitive binary relation overZ. Each agent i(P N)
has a preference ordering Ri over Z. The asymmetric part Pi of Ri is defined by
xPiy if and only if xRiy and not yRix, while the symmetric part Ii ofRi is defined
by xIiy if and only if xRiy and yRix. A preference profile is thus an n-tuple of
preference orderingsR ” pRiqiPN . For any profileR andK P N0, we write xRKy
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to denote that xRiy holds for all i P K and xPKy to denote that xPiy holds for
all i P K. As usual, Lipx,Rq denotes the lower contour set of x at R for agent i.
The preference domain, denoted by R, consists of the set of admissible preference
profiles satisfying the following property:

R P R ðñ for all x, y P Z : if xINy, then x “ y. (1)

The domain of preferences underlying classical assignment problems, which
are our main focus, satisfies the above property.

The goal of the planner is to implement a social choice rule (SCR) F , defined
by F : R ÝÑ Z0. We refer to x P F pRq as an F -optimal outcome at R. The range

of F is the set

F pRq ” tx P Z|x P F pRq for some R P Ru .

The graph of F is the set

GrpF q ” tpx,Rq|x P F pRq, R P Ru

We impose the following assumption on F :

Definition 1 (Efficiency). We say that SCR F is efficient, if for all R P R, and all
z P F pRq, there does not exist any x P Z such that xRNz and xPiz for at least one
agent i P N .

To present our theory, we find it convenient to move away from classical
mechanisms or game forms. From the implementation viewpoint, the rights
structure is the design variable of the planner, playing the role of mechanism.
Thus, we rely on an implementation framework which models rights distribu-
tion within the society. Roughly speaking, we assume that a planner first de-
scribes the available alternatives via a set of possible states. Then, he specifies
which agent or group has the right to move from a state to another. The rights
distribution is such that, for any state of the world, the prediction of the solu-
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tion concept returns the socially desirable alternatives. Formally, to implement
F , the planner constructs a rights structure Γ “ ppS, dq, h, γq, where S is the state

space equipped with a metric d, h : S Ñ Z the outcome function, and γ a code

of rights, which is a (possibly empty) correspondence γ : S ˆ S Ñ N . Subse-
quently, a code of rights specifies, for each pair of distinct states ps, tq, the family
of coalitions γ ps, tq Ď N that is entitled to move from state s to t. If γps, tq “ H
then no coalition is entitled to move from s to t. We denote by G the set of all
possible rights structures.

The rights structure Γ presented here is an augmented version of the rights
structure introduced by Koray and Yildiz (2018) which does not includes the
metric d. Our formulation would allow us to properly define the solution con-
cept over a possibly infinite state space. From an economic design perspective,
the rights structure is the planner’s design variable and corresponds to a “mech-
anism” in the economic theory jargon. A rights structure Γ is said to be an
individual-based rights structure if, for each pair of distinct states ps, tq, γps, tq
contains only unit coalitions if it is nonempty. A rights structure Γ is termed
finite if the state space S is a finite set.

A rights structure together with a preference profile returns a social environ-

ment (Chwe, 1994), a general framework to model strategic interaction among
agents or groups.

Definition 2 (Social Environment). A social environment is a pair pΓ, Rq consist-
ing of a rights structure Γ together with a preference profile R.

Next, a model of behavior is needed to predict at what state the agents are
going to end up with. This is often done by selecting a solution concept. For-
mally, a solution concept is a map φ : G ˆ R ÝÑ X such that for each social
environment pΓ, Rq P G ˆR it returns a set of states φpΓ, Rq Ď X which are the
prediction of the game. Given pΓ, Rq, we denote by ΦpΓ, Rq the union of all pre-
dictions φ of pΓ, Rq. Finally, we can define implementation via rights structures.
An SCR is implementable in a solution φ by a finite rights structure if, at any
preference profile, the set of outcomes induced by the game coincides with the
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set of socially optimal outcomes.

Definition 3 (Implementation). A rights structureΓ implementsF inφ ifF pRq “
h ˝ Φ pΓ,Rq holds for all R P R. If such a rights structure exists, F is imple-
mentable in φ by a rights structure.

3 Towards Implementation In Rotation
Programs

As outlined above, the fundamental idea of our notion of implementation in
rotation programs relies on the Myopic Stable Set (MSS) Demuynck, Herings,
Saulle and Seel (2019a). As a first step, this section presents the MSS and studies
its implementation via rights structures.

3.1 Implementation In Myopic Stable Set

To define the MSS, we need the notion of a myopic improvement path.4 There is
a myopic improvement path from a state s to a set T if a sequence of coalitional
deviations from s to a state arbitrarily close to T exists such that every coalition
involved in the sequence has the power as well as the incentive to move.

Definition 4 (Myopic Improvement Path). Given a social environment pΓ,Rq, a
sequence of states s1, . . . , sm is called a myopic improvement path from state s1 to
set T Ď S at R, if for all ε ą 0 there exists a state s P T such that dps, smq ă ε and
a collection of coalitions K1, . . . , Km´1 such that, for j “ 1, . . . ,m´ 1,

(i) Kj P γpsj, sj`1q

(ii) hpsj`1qPKj
hpsjq

An MSS can be defined as follows:5
4If the state space is finite then Definition 4 reduces to the following: A sequence of states

s1, . . . , sm is called a myopic improvement path from state s1 to set T Ď S atR, if sm P T , and there
exists a collection of coalitionsK1, . . . ,Km´1 such that, for j “ 1, . . . ,m´1,, (i)Kj P γpsj , sj`1q

and (ii) hpsj`1qPKj
hpsjq.

5When the set of states is finite, Condition 2 reduces to the following one: Iterated External
stability: For all t P SzM , there exists a direct myopic improvement path from t to M .
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Definition 5 (Myopic Stable Set). A set msspΓ, Rq Ď S is an MSS at pΓ,Rq if it is
closed and satisfies the following three conditions:

1. Deterrence of external deviations: For all s P msspΓ, Rq, and all t P SzmsspΓ, Rq,
there is no coalition K P γps, tq, such that h ptqPKh psq.

2. Asymptotic external stability: For all t P SzmsspΓ, Rq, there exists a myopic
improvement path from t to msspΓ, Rq.

3. Minimality: There is no setM 1 Ă msspΓ, Rq that satisfies the two conditions
above.

Deterrence of external deviations requires that from any state in the set, there
are no coalitional deviations to states outside the set. Asymptotic external stability

states a myopic improvement path to the set exists from any state outside the
set. Finally, Minimality requires that the MSS is the smaller closed set satisfying
the first two conditions.

Let MSS(Γ , R)=ts P S | s P msspΓ, Rqu be the union of all MSSs at pΓ, Rq.
Thus, according to Definition 3, an SCR is implementable in MSS by a finite
rights structure if, for each preference profile, the outcomes selected by F coin-
cide with those of the MSS.

Our characterization result is based on the following definition.

Definition 6 (Chain). Given a triple pz,R,R1q P Z ˆR ˆR, a sequence of out-
comes z1, . . . , zh, with z “ z1 and z ‰ zh, is a chain if there are agents i1, . . . , ih´1
such that:

(A.0) zk`1P
1
ik
zk for all k P t1, . . . , h´ 1u;

(A.1) Lipzh, Rq Ę Lipzh, R
1q for some i P N .

Condition (A.0) states that for each outcome there is an agent preferring its
successor in the sequence. Next, (A.1) requires that at the last element of the
chain there is an agent who experiences a preference reversal when preferences
moves from R to R1.

We will be using the following condition in our characterization result.
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Definition 7 (Indirect Monotonicity). An SCR F satisfies indirect monotonicity if
for all pz, R,R1q P Z ˆR ˆR, the following is true: if z P F pRq and z R F pR1q

with Lipz, Rq Ď Lipz,R
1q for all i P N , then the sequence z1, . . . , zh with z “ z1,

z ‰ zh and zi P F pRq for all i “ 1, ..., h, is a chain.

Suppose that z is F -optimal at R. Further, suppose that preferences change
from R to R1 in such a way that the standing of z improves for every agent.
Finally, suppose that z is not F -optimal at R1. Thus, we are in the case where
Maskin monotonicity is violated. Then, indirect monotonicity says that from z

there is a chain of F -optimal outcomes at R.
Note that indirect monotonicity is implied by Maskin monotonicity6, and they

are equivalent when F is single-valued. Also, our notion of indirect monotonicity

resemble Condition α of Abreu and Sen (1990). However, in contrast to Abreu
and Sen (1990), we requires sequence of F -optimal outcomes at R.

The following example is illustrative.

Example 1. Suppose that N “ t1, 2, 3u, Z “ tx, y, zu, and R “ tR,R1u. Prefer-
ences are defined in the table below.

R R1

1 2 1 2
y x x y
x z z z
z y y x

x y

z

{2}

{1}

{1}{2}

Figure 1: Example of preferences and implementing rights structure.

Let F be such that F pRq “ ty, zu and F pR1q “ tx, yu. Note that this SCR vio-
lates Maskin monotonicity. Indeed, the outcome z is F -optimal at R and it does
not fall down in agents’ preferences atR toR1, however it is not F -optimal atR1.

6Maskin monotonicity says that if an outcome z is F -optimal at the profile R and this z does
not strictly fall in preference of anyone when the profile changes to R1, then z must remain a
F -optimal outcome at R1
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This SCR satisfies indirect monotonicity because there is a sequence z, y consisting
ofF -optimal elements atR such that z, y is a chain atR1 (Condition (A.0)), i.e. at
R1, agent 2 prefers y to z . Moreover, for agent 1 it holds thatL1py,Rq Ę L1py,R

1q,
(Condition (A.1)). Next, right part of Figure 1 is an example of implementing
in MSS via a rights structure. We assume that states are outcomes. The rights
structure is represented by an oriented graph in which vertices are the states and
the edges illustrates the code of rights: agent 2 can move form x to y and from y

to z and vice versa; agent 1 can move from z to y and from y to x and vice versa.
According to this rights structure, the unique MSS at R and R1 are respectively
msspΓ, Rq “ ty, zu and msspΓ, R1q “ tx, yu. To see this, take as an example the
preference profile R. Then, the set ty, zu satisfies deterrence of external devia-
tions (only agent 1 can deviate to x but such a deviation is not a profitable for
him), iterated external stability (from x there is a myopic improvement path to
y by agent 1) and minimality (any subset of ty, zu would violate deterrence of
external stability).

The following result establishes our characterization result for the imple-
mentation in MSS via rights structures.7

Theorem 1. Any efficient F satisfying indirect monotonicity is implementable in MSS

by a finite rights structure.

Indirect monotonicity is a sufficient condition for implementation in MSS via
rights structures, though it is not necessary. Example 1 in Korpela, Lombardi
and Saulle (2021) makes the point. Note that the implementing rights structure
in Example 1 consists of a rotation scheme in which society rotate between x and
y at R and between y and z at R1. However, there are circumstances in which
the implementation in MSS is not always able to guarantee a rotation scheme.
Before discussing this point and solving the drawback by elaborating a notion
of rotation programs, we discuss in the following subsections the relevance of

7When Z is not a finite set, by using the rights structure designed in the proof of Theorem 1,
it is possible to show that it implements F in MSS when F is closed valued and upper hemi-
continuous, the set of alternatives Z is compact and the domain R is also compact.
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Theorem 1. However, the impatient reader can move to Section 4 without loss
of understanding.

3.2 Convergence Property

As Jackson (1992) and Moore (1992) point out, canonical mechanisms for
implementing socially desirable outcomes have unnatural futures: they are highly
complex and challenging to explain in natural terms. In particular, when agents
are boundedly rational, such mechanisms may lead to the convergence of un-
desirable outcomes. Our result shows that even unsophisticated agents, using
elementary adjustment rules, can reach F -optimal outcomes; our mechanism
is robust to some bounded rationality. Indeed, Theorem 1 demonstrates that
the implementing rights structure guarantees the convergence to a myopic sta-
ble state in a finite number of transitions among states. The reason is that our
implementation problems are solved by devising a finite rights structure. This
property assures that the MSS can be reached in a finite sequence of myopic
improvements from any state outside of it.

Corollary 1. Every efficient and monotonic F : R ÝÑ Z0 is implementable in MSS

via a finite rights structure.

This result can be thought of as the counterpart of recurrent implementa-
tion in better-response dynamics studied by Cabrales and Serrano (2011), in
which agents myopically adjust their actions in the direction of better-responses.
When combined with a “no-worst-alternative condition,” these authors show
that a variant of monotonicity is a key condition for implementation in recur-
rent strategies. Corollary 1 shows that for assignment problems of indivisible
goods, monotonicity, together with Pareto efficiency, is sufficient for a similar
type of implementability.

In Appendix A, we study two models where convergence is desirable. In
particular, we consider exchange economies with complex endowment systems
recently introduced by Balbuzanov and Kotowski (2019) as well as the class of
“pure marriage problems” studied by Knuth (1976). Both models do not satisfy
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any converge property. We show that the direct exclusion core of Balbuzanov
and Kotowski (2019) and the solution that selects all stable matchings in the
sense of (Knuth, 1976), can be implemented in MSS.

3.3 Connections To Other Notions Of Implementa-
tion

We conclude this section by showing that implementation in MSS by a fi-
nite rights structure is equivalent to implementation in absorbing set and im-
plementation in generalized stable set (van Deemen, 1991; Page and Wooders,
2009). Before showing it, let us formally introduce these alternative notions of
stability.

Definition 8 (Absorbing Set). Let us assume that S is finite. The setApΓ, Rq Ď S

is an absorbing set at pΓ, Rq if it satisfies the following two conditions:
(a) For all s P ApΓ, Rq, if |ApΓ, Rq| ą 1 then there exists a finite myopic improve-
ment path from s to ApΓ, Rq.
(b) For all s P ApΓ, Rq there does not exist any finite myopic improvement path
from s to SzApΓ, Rq.

Condition (a) affirms that for any state in the absorbing set it is possible to
reach any other state via a myopic improvement path; Finally, by Condition (b),
from any state in the absorbing set it is not possible to leave the set via a myopic
improvement path.

van Deemen (1991) and Page and Wooders (2009) propose an extension of
the stable set (von Neumann and Morgenstern, 1944) which replace the stan-
dard dominance relation with its transitive closure. The following is an equiva-
lent definition of the generalized stable set based on our notion of improvement
path.

Definition 9 (Generalized Stable Set). Let us assume that S is finite. The set
V pΓ, Rq Ď S is a generalized stable set at pΓ, Rq if it satisfies the following two
conditions:

13



1. Iterated Internal Stability: For all s P V pΓ, Rq there is not a t P V pΓ, Rqwith s ‰ t

such that s “ s1, ..., sm “ t is a myopic improvement path from s to V pΓ, Rq.
2. Iterated External Stability: For all s P SzV pΓ, Rq there exists a finite myopic
improvement path from s to V pΓ, Rq.

Inarra, Kuipers and Oilazola (2005) and Nicolas (2009) study the relation be-
tween absorbing sets and generalized stable sets. Korpela, Lombardi and Saulle
(2021) (Theorem 2) provide further insights into the relationship between these
solution concepts. In particular, they show that when the state space is finite,
the union of generalized stable sets is equivalent to the union of absorbing sets,
which, in turn, is equivalent to the unique myopic stable set.

Theorem 1, when combined with Theorem 2 in Korpela, Lombardi and Saulle
(2021), gives us the following significant result.8

Corollary 2. Any efficient F satisfying indirect monotonicity is implementable in ab-

sorbing sets by a finite rights structure, and in generalized stable sets by a finite rights

structure.

4 Rotation Programs
As noted earlier, implementation in MSS is only a preliminary step towards

implementation in rotation programs. Indeed, on the one hand, implementa-
tion in MSS gives the planner the ability to design cycles among socially opti-
mal outcomes. On the other hand, the planner does not have complete control
of the cycles, in the sense that he cannot always guarantee that all agents circu-
late through all socially optimal outcomes. We illustrate this point through the
following example.

Example 2. Suppose that N “ t1, 2, 3u, Z “ tx, y, zu, and R “ tR,R1u. Prefer-
ences are defined in the table below.

Let F be such that F pRq “ tx, y, zu and F pR1q “ tx, yu. This SCR satisfies
indirect monotonicity because F pR1q Ď F pRq, F pRqzF pR1q “ tzu and L3pz,Rq Ę

8The proof of Corollary 2 is omitted.
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R R1

1 2 3 1 2 3
x z y x x y
y x z y y x
z y x z z z

x y

z

{3}

{1,2}

{K}
{K}

Figure 2: Example of preferences and implementing rights structure. #K ě 2

L3pz,R
1q. Note that at R1 only agent 3 wants to move from x to y, and agents 1

and 2 want to move from y to x. Therefore, to produce a rotation among tx, yu at
R1, it is necessary to give to agent 3 the power to move from x to y and to agent 1

or 2 the power to move from y to x. A rights structure that implements F in MSS
is depicted in Figure 2, in which the set of states is S “ Z, the outcome function
is the identity map, and in which γ is represented by the arrows. Note that at
R, such a rights structure generates a sub-cycle in which the outcome z is ruled
out. Consequently, the rotation among states tx, y, zu cannot be guaranteed.

We solve this drawback by focusing on a refinement of the MSS.

4.1 Implementation In Rotation Programs

We start by defining a rotation program as follows.

Definition 10 (Rotation Program). A rotation program for pΓ, Rq is an ordered sub-
set of states S̄ “ ts1, ..., smu Ď S such that for all si, si`1 P S̄:

(i) For all s P S̄z tsiu, h psiq ‰ h psq.

(ii) For all s P Sz tsi, si`1u and allK P N0, ifK P γ psi, sq, then not h psqPKh psiq.

(iii) There exists K P N0 such that K P γ psi, si`1q and h psiqPKh psi`1q.

Condition (i) says that in a rotation program there are no two states provid-
ing the same outcome; Conditions (ii) and (iii) together require that the only
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possible transitions occur among adjacent states, in a uni-directional way, fol-
lowing the cycle. Our notion of implementation in rotation programs can be
stated as follows.

Definition 11 (Implementation in Rotation Programs). A rights structure Γ imple-
ments F in rotation programs if the following requirements are satisfied:

• Γ implements F in MSS.

• For all R P R, MSS pΓ, Rq is partitioned in rotation programs tS1, ..., Smu

such that h ˝ Si “ F pRq for all i “ 1, ...,m.

If such a rights structure exists, we say thatF is implementable in rotation programs.

Roughly speaking, the above notion of implementation refines our notion of
implementation in MSS, in the sense all myopic stable states must be arranged
circularly. Thus, and irrespective of agents’ preferences, the core is empty when
an implementable F pRq has more than one outcome.

4.2 Characterization Results

In what follows, we introduce the notion of Rotation Monotonicity and Prop-

erty M, which are at the heart of the theory we develop here. To this purpose,
we define the notion of ordered chain.

Definition 12 (Ordered Chain). Given a pair pR,R1q P R ˆR and ordered out-
comes z1, ..., zm, a sequence zk, . . . , zk`h (modulo m) with 1 ď k ď m and
1 ď h ď m ´ 1 is an ordered chain if there are agents ik, . . . , ik`h and an outcome
z P Z such that:

(B.0) zk`1``P
1
ik``

zk`` for ` P t0, ..., h´ 1u;

(B.1) zk`hRik`h
z and zP 1ih`h

zk`h

The notion of ordered chain recall the notion of a chain with the main dif-
ference that the former must respect an initial order. Condition (B.0) is similar
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to (A.0) in Definition 6: for each outcome in the sequence there is an agent pre-
ferring its successor. In contrast to (A.0), the new condition (B.0) does include
the last element of the sequence. Finally, Condition (B.1) requires that at the last
element of the sequence there is an agent who experiences a preference reversal.

We will be using the following condition in our characterization result.

Definition 13 (Rotation Monotonicity). An SCR F satisfies rotation monotonicity if
for all R P R, F pRq can be ordered as z1,R, . . . , zm,R for some integer m ě 1, and
for all pR,R1q P R ˆR, the following requirement is satisfied: if F pRq ‰ F pR1q

and either #F pR1q ą 1 or r#F pR1q “ 1 and F pR1q R F pRqs, then for each zk,R P
F pRq for 1 ď k ď m, the sequence zk,R, . . . , zk`h,R (modulo m) with 1 ď k ď m

is an ordered chain.

Fix any two preference profiles: R andR1. First, note that rotation monotonicity

applies only when F pRq ‰ F pR1q and either (i) F pR1q is not a single-tone or (ii)
F pR1q is a single-tone but it is not F -optimal at R. When rotation monotonicity

has a bite, it requires that the F -optimal outcomes F pRq can be ordered so that
for every z P F pRq there is a an ordered chain of F -optimal components.

Rotation monotonicity implies indirect monotonicity when #F pRq ‰ 1 for all
R P R. With respect to indirect monotonicity, rotation monotonicity requires that
all F -optimal outcomes at R must be arranged circularly. The next result shows
that only SCRs satisfying rotation monotonicity are implementable in rotation pro-
grams.

Theorem 2 (Necessity). If F is implementable in rotation programs, then it satisfies

rotation monotonicity.

Recall that the SCR in Example 2 is not implementable in rotation programs
while Example 1 is. It is illustrative to study these examples in the light of The-
orem 2.

Example 1 (Continued). The social choice rule F in Example 1 satisfies rotation

monotonicity. To see this, first note that F pRq ‰ F pR1q and both are multi-valued.
AtR, the F -optimal element can be ordered as y, z. Then, from y there is a chain
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ty, zu Ď F pRq ( zP 11y) and a preference reversal for agent 1 (yR1z). Moreover,
from z there is a chain ty, zu Ď F pRq ( yP 12z) and a preference reversal for agent 2

(zR2y). At R1, the F -optimal element can be ordered as x, y. Then, from x there
is a chain tx, yu Ď F pRq ( yP1x) and a preference reversal for agent 1 (xR11y).
Finally, from y there is a chain ty, xu Ď F pRq ( xP2y) and a preference reversal
for agent 2 (yR12x).

Example 2 (Continued). The social choice rule F in Example 2 does not satisfy
rotation monotonicity. To see this, notice that there are two cyclic orderings of
F pRq ´ x, y, z and x, z, y. Both violate rotation monotonicity. Ordering x, y, z vi-
olates rotation monotonicity because Lipy,Rq Ď Lipy,R

1q and z P Lipy,R
1q for all

i P N , and x, z, y violates rotation monotonicity because Lipx,Rq Ď Lipx,R
1q and

z P Lipx,R
1q for all i P N .

We already pointed out that rotation monotonicity has a bite only when ei-
ther #F pR1q ą 1 or [#F pR1q “ 1 but F pR1q R F pRq]. It follows that rotation

monotonicity alone is not a sufficient condition for implementation in rotation
programs. However, we show that it is sufficient together with another auxil-
iary condition termed Property M, which can be defined as follows.

Definition 14 (Property M). An SCR F satisfies property M if for all R P R, the
set F pRq can be ordered as z1,R, . . . , zm,R for m “ F pRq, and for all pR,R1q P
R ˆ R, the following requirement is satisfied: if F pRq ‰ F pR1q, #F pR1q “ 1

and F pR1q “ zj,R for 1 ď j ď m then for each zk,R P F pRqzF pR1q for 1 ď k ď m

and k ‰ j

• either the sequence zk,R, . . . , zk`h,R (modulo m) is an ordered chain;

• or there is a sequence of agents i1, . . . , i` such that:

1. F pR1qP 1i`zj´1,RP 1i`´1
...P 1i2zk`1,RP

1
i1
zk,R

and

2. Li pzj,R, Rq Y tzj`1,Ru Ď Li pzj,R, R
1q @i P N .
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Fix any two preference profilesR andR1. Property M applies only whenF pR1q
consists of an unique outcome, zj,R, that is also F -optimal at R. Then Property

M requires that for each outcome that is in F pRq but not in F pR1q either the
conclusion of rotation monotonicity holds or there exists a sequence of agents who
myopically prefer under R1 to move from zk,R to F pR1q via a sequence of F -
optimal outcomes at R and, moreover, for every agent, there is a monotonic
transformation at zj,R when preferences change from R to R1 and zj`1,R is not
strictly preferred to zj,R at R1.

Theorem 3 (Sufficiency). If F is efficient and it satisfies rotation monotonicity and

Property M with respect to the same ordered set of outcomes in F pRq, for all R P R,

then it is implementable in rotation programs by a finite rights structure.

We conclude this section by considering the case that a multi-valued SCR de-
scribes the planner’s goal at any preference profile. As discussed by Mukherjee,
Muto, Ramaekers, and Sen (2019), this is a relevant case. Under these circum-
stances, since Property M is always satisfied, rotation monotonicity fully character-
izes the class of implementable rules in rotation programs. The following result
establishes the point.9

Corollary 3. Suppose #F pRq ą 1 for all R P R. Then F is implementable in rotation

programs if and only if F satisfies rotation monotonicity.

5 Assignment Problems
A basic yet widely applicable problem in economics is to allocate indivisible

objects to agents. This problem is referred to as the assignment problem. In
this setting, there is a set of objects, which we term as “jobs”, and the goal is to
allocate them among the agents in an optimal manner without allowing trans-
fers of money. The assignment problem is a fundamental setting that is not an
economic environment. Since the model applies to many resource allocation

9The proof of Corollary 3 is omitted.
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settings in which the objects can be public houses, school seats, course enroll-
ments, car park spaces, chores, joint assets of a divorcing couple, or time slots
in schedules, we now apply Corollary 3 to this fundamental setting.

A job rotation problem pN, J, P q is a triplet where N “ t1, ..., nu is a finite
set of agents with n ě 2, J “ tj1, ..., jnu is a finite set of jobs, P “ pPiqiPN is
a profile of linear orderings such that every Pi Ď J ˆ J . Let pN, J, P q be a job
rotation problem. Every agent i’s preferences over J at Pi can be extended to
an ordering over the set of allocations J̄ “ tj P Jn|jk ‰ jl for all k, l P Nu in the
following natural way:

jRij
1
ô either jiPij

1
i or ji “ j1i, for all j, j1 P J̄ .

Let R denote the set of all (extended) preference profiles.
Example 3 in Appendix A shows that not every efficient F on R is imple-

mentable in rotation programs. Given this, we focus on two classes of job rota-
tion problem that satisfy rotation monotonicity and thus can be implemented in
rotation programs.

5.1 A Job Rotation Problem With Restricted Domain

There are situations in which there is a common best/worst job among the
available ones. For instance, suppose that the head of an economics depart-
ment needs to allocate one microeconomics course to each of its microeconomics
teachers. Courses can be ranked according to their sizes. The best possible as-
signment for everyone is to be assigned to the PhD course with the lowest num-
ber of students, whereas the common worst possible outcome for every teacher
is to be assigned to the largest possible class at the undergraduate level.

In what follows, we consider situations in which there is a common best job,
which is denoted by j˚1 . Since situations in which there is a common worst job
can be treated symmetrically, we omit their analysis here. The set of jobs J is
given by tj˚1 , j2, ..., jnu. Let R̄ be preference domain such that
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R̄ “ tR P R|for all i P N , arg maxJ Ri “ tj
˚
1 uu. With abuse of notation, we also

use R̄ to denote the set of all (extended) preference profiles. The next result
show that the efficient solution F defined over R̄ is implementable in rotation
programs.

Theorem 4. F : R̄ Ñ J̄0 is implementable in rotation programs.

The intuition behind this theorem is that for eachR, elements of F pRq can be
arranged circularly as x p1, Rq , ..., x pm,Rq , x p1, Rq such that no two consecutive
allocations of the arrangement allocate j˚1 to the same agent. Thus, the ordered
set required by rotation monotonicity can be set as x p1, Rq , ..., x pm,Rq. Take any
R1 such that F pRq ‰ F pR1q. Since F is monotonic, it follows that there exists an
x pi, Rq P F pRq for which it holds that x pi, RqR`z and zP 1`x pi, Rq for some agent
` P N and an allocation z P J̄ . Since, by the way we arranged the elements of
F pRq, it holds that for all k ‰ i, x pk ` 1, RqP 1jx pk,Rq for some agent j, it is clear
that F satisfies rotation monotonicity.

In the context of auction design, Milgrom (2004) has stated that, in contrast
to much of the theoretical literature, the set of outcomes is almost never fixed in
practice but it is itself subject to design. This observation extends also to tasks.
To see it, let us go back to our problem of task allocation in the department. In
this context, tasks can be designed by the head of the department in a way that
there is a common best task, in the sense that it is the less time consuming one.
Since in many cases tasks can be designed in a way of meeting the requirements
of Theorem 4, the set of its applications is wide.

5.2 A Job Rotation Problem With Partially Informed
Planner

As another application we consider a scenario in which the planner knows
that two agents have the same top choice. Specifically, for agent i’s linear order-
ing Ri Ď J ˆ J , let τ pRiq denote the top-ranked job of agent i at Ri. We assume
that planner knows that both agent 1 and agent 2 have a common top-ranked job,
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although he does not necessarily know which job this is, and that the domain of
admissible profiles of linear orderings is given by R̂ “ tR P R|τ pR1q “ τ pR2qu.
With abuse of notation, we also use R̂ to denote the set of all (extended) pref-
erence profiles over J̄ .

We are interested in implementing a subsolution φ : R̂ ÝÑ J0 of the effi-
cient solution. We construct φ at R by following three sequential steps: Step 1:
Assign τ pR1q either to agent 1 or to agent 2. Step 2: Assign the remaining jobs
Jz tτ pR1qu to Nz t1, 2u in a Pareto efficient way. Step 3: Assign the remaining
job to agent 2 if agent 1 has received his top-ranked job, otherwise, assign it to
agent 1. The set φ pRq can be thought of as the set of outcomes generated by an
underlying random serial dictatorship mechanism (Abdulkadiroğlu and Sönmez,
1998), in which the only permutations that are admissible are those in which
the first agent and the last agent of the ordering are respectively either agent 1
and agent 2 or agent 2 and agent 1.

Theorem 5. φ : R̂ Ñ J̄0 is implementable in rotation programs.

6 Concluding Remarks
This paper studies rotation programs in an implementation framework. A

rotation program is an MSS (Demuynck, Herings, Saulle and Seel, 2019a) in
which states are arranged circularly. We identify conditions for implementation
in MSS of Pareto efficient SCRs by a finite rights structure (Koray and Yildiz,
2019). Implementation in MSS is robust in the following sense: at any pref-
erence profile, every non-stable allocation converges to a stable allocation via a
sequence of myopic deviations. Moreover, implementation in MSS encompasses
implementation in absorbing sets and in generalized stable sets.

We identify a sufficient condition for implementation in MSS, named indi-

rect monotonicity. This condition is weaker than (Maskin) monotonicity. Fur-
thermore, we show that rotation monotonicity, when combined with an auxiliary
condition, is sufficient for implementation in rotation programs. Rotation mono-
tonicity is necessary and sufficient for implementation when the SCR never se-
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lects a single outcome. Finally, we study some welfare implications of this char-
acterization result. We learn that implementation in rotation programs is some-
what restrictive when the set of outcome is fixed. However, as in the context of
auction design (Milgrom, 2004), the outcome space is important when SCRs are
implemented in rotation programs. By a clever design of new outcomes a host
of nice rules become implementable.
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Appendix A

Convergence in Exchange Economy

Let us consider the class of exchange economies studied by Balbuzanov and
Kotowski (2019) and consider the notion of direct exclusion core. We show, by
means of an example, that free exchange of goods do not necessary converge to
the direct exclusion core. However, the direct exclusion core is implementable
in MSS via a finite rights structure. This implies that irrespective of the initial
allocation of objects, it is possible to converge to a direct exclusion core allocation
in a finite sequence of coalitional moves.

An economy is a quadruplet pN,H, P, ωq where N “ t1, ..., nu is a finite non-
empty set of agents, H “ th1, ..., hmu is a finite set of indivisible objects, called
houses, that can be allocated among the agents, P “ pPiqiPN is a profile of linear
orderings, where each linear ordering is defined over H Yth0u, and the endow-
ment system ω : 2N ÝÑ 2H is a function that specifies the houses owned by
each coalition. For each coalition K P N0, we write ω pKq “ Ť

TPK0
ω pT q. Let

us assume that the endowment system ω satisfies the following four properties:
(A1) Agency: ω pHq “ H, (A2) Monotonicity: K Ď K 1 ùñ ω pKq Ď ω pK 1q,
(A3) Exhaustivity: ωpNq “ H , and (A4) Non-contestability: For each h P H , there
exists Kh P N0 such that h P ω pKq ðñ Kh Ď K.

Property A1 restricts ownership to agents or groups. Property A2 requires
that a coalition has in its endowment anything that belongs to any sub-coalition.
Property A3 states that the grand coalition N jointly owns everything. In prop-
erty A4, coalition Kh is called the minimal controlling coalition of house h. It
guarantees that each house has a set of one or more “co-owners” without oppos-
ing and mutually exclusive claims. As Balbuzanov and Kotowski (2019, Lemma
1) show, these properties are needed to assure that the direct exclusion core is
nonempty.

We assume that each agent may live in at most one house and each house h P
H may accommodate at most one agent. A house may be vacant and an agent
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can be homeless. We can model this latter outcome by the agent’s assignment
to an outside option h0 R H , which has unlimited capacity.

An allocation µ : N ÝÑ H Y th0u is an assignment of agents to houses such
that #µ´1 phq ď 1 for all h P H . We write µpKq to denote Ť

iPK µ piq for any
K P N0. Let pN,H,R, ωq be an economy. Every linear ordering Ri can be ex-
tended to an ordering over the collection M of allocations in the following way:
µRiµ

1 ðñ either µ piqPiµ
1 piq or µ piq “ µ1 piq , for all µ, µ1 P M. With little

abuse of notation, we denote both by Ri. Let R denote the class of admissible
preference profiles of extended preferences.

Definition 15. Given an economy pN,H,R, ωq, a coalition K P N0 can directly

exclusion block the allocation µ at R with allocation σ if
(a) σpiqPiµ piq for all i P K and
(b) µpjqPjσpjq ùñ µpjq P ωpKq for all j P NzK.

To speak, a coalition can directly exclusion block an assignment whenever
each member strictly gains from an alternative and anyone harmed by the real-
location is excluded from a house belonging to the coalition. The direct exclusion

core is the set of allocations that cannot be directly exclusion blocked by any
nonempty coalition.

Definition 16 (Direct Exclusion core). Given an economy pN,H,R, ωq, its direct ex-

clusion core, denoted byCO pR,ωq, is defined byCO pR,ωq “ tµ PM|no coalition
can directly exclusion block µ at Ru.

Thus, no coalition can gainfully destabilize a direct exclusion core allocation
by invoking their collective exclusion rights. Balbuzanov and Kotowski (2019,
Lemma 1) show that the direct exclusion core is never empty and all its alloca-
tions are Pareto efficient.

Let us show that the direct exclusion core does not satisfy any external sta-
bility requirement. To this end, let us represent an allocation µ by a permutation
matrix with columns indexed by elements of N and rows indexed by elements
of H Y th0u, where h0 is the last row. If for some h P H Y th0u and some i P N ,
entry µhi “ 1, then good h has been assigned to agent i.
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Let us consider an economy with three agents and three houses.10 Each
house i P H is owned by agent i and agents’ preferences are given in the ta-
ble below. It can be checked that the direct exclusion core at R consist of the

R
1 2 3
2 3 1
3 1 2
1 2 3
h0 h0 h0

µ “

»

—

—

–

0 0 1
1 0 0
0 1 0
0 0 0

fi

ffi

ffi

fl

allocation µ. Let us consider the following allocations:

σ1 “

»

—

—

—

—

—

—

–

0 1 0

1 0 0

0 0 1

0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, σ2 “

»

—

—

—

—

—

—

–

1 0 0

0 0 1

0 1 0

0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

and σ3 “

»

—

—

—

—

—

—

–

0 0 1

0 1 0

1 0 0

0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Although the direct exclusion core is not empty, the process of ‘free’ ex-
change of houses may not lead to µ because such a process may cycle. Indeed,
agents may myopically cycle around σ1, σ2 and σ3.

To see it, note that for each agent i, his endowment ω piq “ i corresponds
to his third choice–his last choice is to become homeless. Therefore, given this
initial situation, coalition t1, 2u can trade so that they can achieve the allocation
σ1. At σ1, agent 1 obtains his first best choice. Thus, coalition t2, 3u is the only
coalition that can achieve a strict improvement. The only allocation that t2, 3u
can move to is allocation σ2, where agent 2 obtains is first best choice. At σ2, only
coalition t1, 3u can achieve a strict improvement by moving to the only attainable
allocation σ3, where agent 3 obtains is first best choice. At σ3, only coalition t1, 2u
can achieve a strict improvement by moving to the only attainable allocation σ1.
Therefore, free exchange may lock agents in a cycle of exchanges.

A natural question that arises from the preceding example is whether it is
possible to achieve the direct exclusion core by means of a different exchange
process. The answer is provided by Corollary 4, which shows that the direct

10We borrow this example from Demuynck, Herings, saulle and Seel (2019b, pp.12-13).
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exclusion core is implementable in MSS via a finite rights structure. To formalize
our answer, fix any endowment system ω satisfying the above four properties.
Let us define FCO

ω by FCO
ω pRq “ CO pR,ωq for all R P R.

Corollary 4. Fix any endowment system ω satisfying properties A1-A4. FCO
ω is im-

plementable in MSS via a finite rights structure.

Convergence In Matching

As a second application, we consider a two-sided, one-to-one matching model,
namely the “marriage problem”. A marriage problem is a market without trans-
fers where the sides of the market are, for example, workers and firms (job
matching), medical students and hospitals (matching of students to internships),
students and advisors (matching of students to thesis advisors). The two sided
of the markets are simply referred as “men” and “women”, hence the name
“marriage problem”. An output of the model is termed a matching, which pairs
each woman with at most one man, and each man with at most one woman.
Roughly speaking, a matching is stable when there is no blocking pair, that is,
no pair of agents are better off with each other than with their assigned part-
ners. A formal description of this matching model is presented in ??. There
are two prominent models describing the marriage problem: the Gale-Shapley
model (Gale and Shapley, 1962) and the Knut model (Knuth, 1976). The for-
mer studies stability for marriage problems allowing the possibly for agents to
be single. The latter is a pure matching model in which no agents is allowed
to be single (and thus the number of men and women is assumed to be the
same). Roth and Vande Vate (1990) show that, the set of stable matching in the
Gale-Shapley model exhibits a convergence property, that is, for any non stable
matching there exist a myopic improvement path to a stable matching. On the
contrary, for the Knut model, no general convergence result is provided. More-
over Tamura (1993) shows that, under usual matching rules, when there are at
least four women, there exists preferences such that agents cycle among non sta-
ble matchings. Our next result fills the gap. Indeed, since a stable matching in
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the marriage problem is monotonic and efficient, we establish, as a corollary to
Theorem 1, that the set of stable matching in the Knut model is implementable
in MSS and thus there exists a mechanism such that a converge property in the
Knut model is restored.11

Corollary 5. The set of stable matching in the Knut model is implementable in MSS

via a finite rights structure.

Note that, under usual matching rules, Demuynck, Herings, Saulle and Seel
(2019a) show that the MSS is a superset of the set of stable matchings. From
this point of view, Corollary 5 further enlighten the relation between the MSS
and the set of stable matchings. Moreover, it suggests that implementation by
rights structures could represent a tool to refine the MSS whenever its prediction
under canonical rules is too loose. Since this conjecture overcomes the purposes
of the present work, we leave it as an avenue for future research.

A Not Implementable Efficient SCR

Example 3. Let F be the efficient SCR defined over R. Suppose that there are
three agents. Let the profiles P, P 1, P 2 be defined as follows:

P

1 2 3
j1 j1 j2

j3 j2 j3

j2 j3 j1

,

P 1

1 2 3
j1 j1 j3

j3 j2 j2

j2 j3 j1

and

P 2

1 2 3
j1 j1 j2

j3 j3 j3

j2 j2 j1

.

It can easily be checked that F pRq “ tpj3, j1, j2q , pj1, j2, j3q , pj1, j3, j2qu, F pR1q “
tpj3, j1, j2q , pj1, j2, j3qu andF pR2q “ tpj3, j1, j2q , pj1, j3, j2qu. F is not implementable
in rotation programs because it violates rotation monotonicity. To see it, assume,
to the contrary, that F satisfies rotation monotonicity. Then, the elements of F pRq
can be ordered as x p1, Rq , x p2, Rq , x p3, Rq.

11The proof of Corollary 5 is omitted.
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Let us consider R2. Select i P N such that x pi, Rq “ pj3, j1, j2q. We show that
x pi` 1, Rq “ pj1, j3, j2q. Since x pi, Rq has not fallen strictly in anyone’s pref-
erence ordering because R2 is a monotonic transformation of R at pj3, j1, j2q “
x pi, Rq–Li ppj3, j1, j2q , Rq Ď Li ppj3, j1, j2q , R

1q for each agent i, it follows that we
can only move to the next element of the ordered set, that is, to x pi` 1, Rq. Since
the top-ranked job for agent 2 at P 2 is j1 and since, moreover, the top-ranked job
for agent 3 at P 2 is j2, it follows that only agent 1 can move to x pi` 1, Rq at R2,
which implies that x pi` 1, Rqmust coincide with pj1, j2, j3q, that is, we have that
x pi` 1, RqP 21 x pi, Rq and x pi` 1, Rq “ pj1, j3, j2q.12

Let us now considerR1. Let us consider the allocation x pi` 1, Rq “ pj1, j2, j3q.
SinceR1 is a monotonic transformation ofR at x pi` 1, Rq, it follows that we can
only move to the next element of the ordered set, that is, to x pi` 2, Rq. Note
that the top-ranked job for agent 1 at R1 is j1. Also, note that the top-ranked job
for agent 3 atR1 is j3. This implies that only agent 2 can move to x pi` 2, Rq, and
so x pi` 2, Rqmust coincide with pj3, j1, j2q “ x pi, Rq, which contradicts the as-
sumption that the elements of F pRq can be ordered as x p1, Rq , x p2, Rq , x p3, Rq.
Thus, F does not satisfy rotation monotonicity.

Appendix B

Proofs

Proof of Theorem 1. The state space S consists of S “ GrpF qYZ. Since Z finite,
it follows that S is finite as well. The outcome function h is defined such that
hpz,Rq “ z for all pz,Rq P S and hpzq “ z for all z P Z. The code of rights γ is
given by the following five rules:

RULE 1: tiu P γppz,Rq, px,Rqq for all R P R, all z, x P F pRq, and all i P N ,
12It cannot be that x pi` 1, Rq “ pj1, j3, j2q because this would lead to the contradiction that

x pi` 2, Rq “ pj3, j1, j2q. The reason is that there cannot be any preference reversal around
pj1, j2, j3q because R2 is a monotonic transformation of R at pj1, j3, j2q. Thus, we can only move
to next element of the ordered set. Since the top-ranked job for agent 1 at P 2 is j1 and since,
moreover, the top-ranked job for agent 3 at P 2 is j2, the allocation x pi` 2, Rq must coincide
with pj3, j1, j2q because pj3, j1, j2qP 22 pj1, j3, j2q.
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RULE 2: tiu P γppz,Rq, xq if x P Lipz, Rq,

RULE 3: tiu P γpx, pz, Rqq for all x, pz,Rq P S, and all i P N ,

RULE 4: tiu P γpx, yq for all x, y P S, and all i P N , and

RULE 5: γps, s1q “ H for any other s, s1 P S.

Let us show that the rights structure Γ “ pS, h, γq defined above implements
F in MSS if F is efficient and indirect monotonic. To this end, suppose that
F is efficient and indirect monotonic. The following lemmata will be useful
in proving our result. To proceed with our lemmata, we need the following
additional definitions. For each R,R1 P R:

MpRq ” tpz,Rq | z P F pRqu Ď S UpRq ” tz P Z | Z Ď Lipz, Rq for all i P Nu;

Q pR,R1q ”

$

&

%

pz1, R1q PM pR1q there does not exist any myopic improvement
path from pz1, R1q to M pRq Y U pRq at R

,

.

-

;

QpRq ”
ď

R1PR

QpR,R1q.

Since S is finite, the property of asymptotic external stability of Definition 5 is
equivalent to the property of iterated external stability, which is defined in a
footnote of Section 3. Fix any profile R. The objective of the following lemmata
is to show that

MSSpΓ,Rq “MpRq Y UpRq YQpRq and F pRq “ h ˝ pMpRq Y UpRq YQpRqq.

Lemma 1. There is a finite myopic improvement path toMpRqYUpRq atR from every

state s P ZzUpRq.

Proof of Lemma 1. Take any s P ZzUpRq. If UpRq ‰ H, then there exists a one
step myopic improvement path from s to UpRq, by Rule 4. Otherwise, suppose
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thatUpRq “ H. We divide the rest of the proof in two parts according to whether
s R F pRq or not.

Case 1: s R F pRq. Suppose that sRihps
1q for all i P N and all s1 P MpRq. Since

s1 P MpRq and F satisfies efficiency, it holds that sIihps1q for all i P N . Since
R P R, it follows that s “ hps1q, and so s P F pRq, which is a contradiction.
Therefore, it must be the case that there exists an s1 P MpRq such that hps1qPis

for some i P N . Hence, by Rule 3, there exists a one-step improvement path
from s to MpRq at R.

Case 2: s P F pRq. Suppose that there exists an agent i P N such that hps1qPis for
some s1 P MpRq. By Rule 3, there exists a one step myopic improvement path
from s to MpRq at R. Otherwise, suppose that sRihps

1q for all s1 PMpRq and for
all i P N . Efficiency of F implies that hps1qINs for all s1 PMpRq, and so hps1q “ s

becauseR P R. However, sinceUpRq “ H, there exists s2 P Z and an agent i P N
such that s2Pis. Note that agent i has the power to move from s to s1 by Rule 4
and the incentive to do so since s2Pis. Since F satisfies efficiency and s P F pRq,
there must exist another agent j P Nztiu such that sPjs

2. Since s P F pRq, by
assumption, it follows that ps, Rq P MpRq. By Rule 3, agent j can move from s2

to ps, Rq. Hence, we have established a two-step myopic improvement path atR
from s to ps, Rq P MpRq—that is, i P γps, s2q and s2Pis and j P γps2, ps, Rqq and
hps, RqPjs

2. �

Lemma 2. For any R1 P R, the set QpR,R1q satisfies deterrence of external deviations

and h pQpR,R1qq “ thpsq P Z|s P QpR,R1qu Ď F pRq.

Proof of Lemma 2. Suppose that QpR,R1q ‰ H for some R1 P R. Otherwise,
there is nothing to be proved. Let us first prove that h pQpR,R1qq Ď F pRq. By
definition, QpR,R1q Ď MpR1q. Take any pz1, R1q P QpR,R1q. Assume, to the
contrary, that hpz1, R1q “ z1 R F pRq. Suppose that there exists an agent i P N
such that yPiz

1 for some y P Lipz
1, R1q. Then, by Rule 2, agent i P γppz1, R1q, yq

since y P Lipz
1, R1q. An immediate contradiction is obtained if y P UpRq be-

cause there is a one step myopic improvement from QpR,R1q to UpRq. Suppose
y P ZzUpRq. By Lemma 1, there is a finite myopic improvement path from y to
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MpRq Y UpRq . Therefore, there exists a finite myopic improvement path from
pz1, R1q to MpRq Y UpRq, which contradicts the definition of QpR,R1q. Thus, it
has to be that Lipz

1, R1q Ď Lipz
1, Rq for all i P N .

Let us proceed according to whether tzu “ F pR1q or not. Suppose that tzu “
F pR1q. Since F satisfies indirect monotonicity and Lipz

1, R1q Ď Lipz
1, Rq for all

i P N , it must be the case that z P F pRq, which is a contradiction. Suppose
that tzu ‰ F pR1q. Since z1 P F pR1qzF pRq and since Lipz

1, R1q Ď Lipz
1, Rq for

all i P N , indirect monotonicity implies that there exist a sequence of outcomes
tz1 . . . , zhu Ď F pR1q with z1 “ z1 and z ‰ zh a sequence of agents i1, . . . , ih´1
such that (i) zk`1Pikzk for all k P t1, . . . , h´ 1u and (ii) Lipzh, R

1q Ę Lipzh, Rq for
some i P N .

By Rule 1, part (i) of indirect monotonicity implies that there exists a finite
myopic improvement path from pz1, R1q to pzh, R1q P MpR1q at R. Part (ii) of
indirect monotonicity implies that there exists a state y P Lipzh, R

1q such that yPizh.
By Rule 2, tiu P γppzh, R1q, yq. An immediate contradiction is obtained whenever
y P UpRq because there is a finite myopic improvement path from pz1, R1q to
UpRq at R. Suppose that y P ZzUpRq. Then, by Lemma 1, there exists a finite
myopic improvement path from y to MpRq Y UpRq at R. Therefore, there exists
a finite myopic improvement path from pz1, R1q to MpRq Y UpRq at R, which
contradicts our initial supposition that pz1, R1q P QpR,R1q. We conclude that
hpQpR,R1qq Ď F pRq.

To complete the proof of Lemma 2, let us show that QpR,R1q ĎMpR1q satis-
fies deterrence of external deviations at R. The only way to get out of this set is
to use either Rule 1 or Rule 2. Therefore, from any state of QpR,R1q, agents can
only deviate to MpR1qzQpR,R1q or Z. Note that if MpR1qzQpR,R1q ‰ H, then
there exists a myopic improvement path to MpRq YUpRq at R, by the definition
ofQpR,R1q. Also, note that from any state inZzUpRq, there exists a finite myopic
improvement path to MpRq YUpRq at R, by Lemma 1. Hence, if an agent could
benefit by deviating from a state s P QpR,R1q to a state outside of QpR,R1q at
R, there would exist a myopic improvement path from s to MpRq Y UpRq at R,

35



which would contradict the definition of QpR,R1q. �

Lemma 3. If V is a nonempty subset of S satisfying both deterrence of external devia-

tions and iterated external stability at pΓ, Rq, then MpRq Ď V .

Proof of Lemma 3. Let V be a nonempty subset of S satisfying both deterrence
of external deviations and iterated external stability at pΓ, Rq. We show that
MpRq Ď V . We proceed in two steps.

Step 1: MpRq X V ‰ H. For the sake of contradiction, letMpRq X V “ H. Then,
by iterated external stability of V , there exists a sequence of states s1, . . . , sm
with s1 P MpRq and a collection of coalitions K1, . . . , Km´1 such that, for j “
1, . . . ,m ´ 1, Kj P γpsj, sj`1q and hpsj`1qPKj

hpsjq. Moreover, sm P V . By def-
inition of γ, by the fact that s1 P MpRq and that hpsj`1qPKj

hpsjq, we have that
only Rule 1 applies, and so it has to be that ts1, ..., smu Ď MpRq. Therefore,
sm PMpRq X V , which is a contradiction.

Step 2: MpRq Ď V . Take any s P MpRq. Assume, to the contrary, that s R V .
Since, by Step 1, MpRq X V ‰ H, take any s1 P MpRq X V . Since s, s1 P MpRq, it
must be the case that hpsq ‰ hps1q. Suppose that for some i P N , hpsqPihps

1q. By
Rule 1, agent i can move from s1 to s, which contradicts the property of deter-
rence of external deviations of V . Therefore, it has to be that hps1qRNhpsq. Since
R P R and hpsq ‰ hps1q, it follows that hps1qPihpsq for some i P N . Since F is
efficient, it follows that hpsq R F pRq, and so s R MpRq, which is a contradiction.
Since the choice of s1 is arbitrary and since, moreover, s P MpRq, it follows that
MpRq X V “ H, which is a contradiction. Thus, it has to be that MpRq Ď V . �

Lemma 4. The setMpRqYUpRqYQpRq satisfies both deterrence of external deviations

and iterated external stability at pΓ, Rq. Moreover, F pRq “ h˝pMpRqYUpRqYQpRqq.

Proof of Lemma 4. By definition of Γ, the set MpRq satisfies deterrence of ex-
ternal deviations. By Lemma 2, the set QpRq satisfies deterrence of external
deviations. By definition, the set UpRq satisfies deterrence of external devia-
tions. Deterrence of external deviations is therefore satisfied byMpRqYUpRqY
QpRq. By Lemma 1, there is a finite myopic improvement path from ZzUpRq to
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MpRq Y UpRq at R. For any R1 P R, by the definition of QpR,R1q, there is a my-
opic improvement path fromMpR1qzQpR,R1q toMpRqYUpRq atR. This implies
that for any state outside of MpRq Y UpRq Y QpRq there is a myopic improve-
ment path to MpRq YUpRq at R, and so iterated external stability is satisfied by
MpRq Y UpRq YQpRq. �

Lemma 5. If V is a nonempty subset of S satisfying both deterrence of external devia-

tions and iterated external stability at pΓ, Rq, then MpRq Y UpRq YQpRq Ď V .

Proof of Lemma 5. By Lemma 3, we already know that M pRq Ď V . By iterated
external stability of V , it has to be that UpRq Ď V—the reason is that no myopic
improvement path can begin from a unanimously best outcome. We are left
to show that QpRq Ď V . To this end, take any R1 P R. Since QpR,R1q satisfies
deterrence of external deviations at pΓ, Rq by Lemma 2, it follows thatQpR,R1q Ď
V , otherwise, iterated external stability of V is violated by the fact that QpR,R1q
satisfies deterrence of external deviations. SinceR1 is arbitrary, we conclude that
QpRq Ď V . Thus, MpRq Y UpRq YQpRq Ď V . �

Lemma 6. MpRq Y UpRq YQpRq “MSSpΓ, Rq

Proof of Lemma 6. Lemma 4 implies that the set MpRq Y UpRq YQpRq satisfies
both deterrence of external deviations and iterated external stability at pΓ, Rq.
Lemma 5 implies that the setMpRqYUpRqYQpRq is the smallest nonempty set
satisfying these two properties. Therefore, the unique MSS of pΓ, Rq consists of
MpRq Y UpRq YQpRq. �

Lemma 7. F pRq “ h ˝ pMpRq Y UpRq YQpRqq.

Proof of Lemma 7. Let us show that F pRq “ h ˝MpRq Y UpRq YQpRq. Clearly,
F pRq Ď h ˝MpRq, and so F pRq Ď h ˝MpRq Y UpRq Y QpRq. For the converse,
Lemma 2 implies that h ˝ QpR,R1q Ď F pRq for all R1 P R. Since F is efficient,
it follows that UpRq Ď F pRq. Moreover, by definition of MpRq, it follows that
h ˝MpRq Ď F pRq. Therefore, F pRq “ h ˝MpRq Y UpRq YQpRq. �

Proof of Corollary 4. Fix any endowment system ω satisfying properties A1-A4.
FCO
ω is Pareto efficient because the direct exclusion core is efficient. In light of
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Corollary 1, we need only to show that FCO
ω is monotonic. To this end, take any

µ P FCO
ω pRq for someR P R. Take anyR1 P R such that Li pµ,Rq Ď Li pµ,R

1q for
all i. Let us show that µ P FCO

ω pR1q “ CO pR1, ωq. Since µ P CO pR,ωq, it follows
that no coalition can directly exclusion block µ at R. That is, for all K P N0 and
for all σ P M, µ piqRiσ piq for some i P K or [µ pjqPjσ pjq for some j P NzK
and µ pjq R ω pKq]. If µ piqRiσ piq for some i P K, it follows from the fact that
R1 is a monotonic transformation of R at µ that µ piqR1iσ piq for some i P K. If
µ pjqPjσ pjq for some j P NzK and µ pjq R ω pKq, it follows from the the fact
that R1 is a monotonic transformation of R at µ and the fact that Rj is a linear
ordering that µ pjqP 1jσ pjq for some j P NzK and µ pjq R ω pKq. We have that no
coalition can directly exclusion block µ at R1. Thus, FCO

ω is monotonic. �

Proof of Theorem 2. Suppose that Γ implements F in rotation program. Fix any
R. Then, the setMSS pΓ, Rq is partitioned in rotation programs tS1, ..., Smu such
that h ˝ Si “ F pRq for all i “ 1, ..., J . Fix any rotation program Sj “ ts1, ..., smu

for somem P N. Let x pi, Rq “ si “ h psiq for all si P Sj . Thus, F pRq is an ordered
set of #Sj “ m ě 1 outcomes. Fix any R1 such that F pR1q ‰ F pRq. Suppose
that either #F pR1q ą 1 or [#F pR1q “ 1 and F pR1q R F pRq]. Fix any si P Sj . We
proceed according to whether si PMSS pΓ, R1q or not.

Case 1: si P MSS pΓ, R1q By the implementability of F , hpsiq P F pRq X F pR1q.
Since by the assumption that F pR1q R F pRq whenever #F pR1q “ 1, it must be
that #F pR1q ą 1. Since Γ implementsF in rotation program, the setMSS pΓ, R1q

is partitioned in rotation programs
 

S̄1, ..., S̄m

(

such that h ˝ S̄i “ F pR1q for all
i “ 1, ...,m. Then, there exists a unique j such that si P S̄j . Without loss of
generality, let si “ s1 P S̄j .

Step 1:. Since S̄j is a rotation program and since #F pR1q ą 1, it follows that there
exist s2 P S̄jz ts1u and a coalitionK1 such thatK1 P γ ps1, s2q and h ps2qP 1K1

h ps1q.
Suppose that there exists i1 P K1 such that h ps1qRi1h ps2q. Then, there exists
h ps2q P Z such that h ps2qP 1i1h ps1q and h ps1qRi1h ps2q, where h ps1q “ h psiq “

x pi, Rq. Otherwise, suppose that h ps2qPK1h ps1q. Since Sj is a rotation program,
it follows that s2 “ si`1 P Sj and h psi`1q “ x pi` 1, Rq.
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The above Step 1 can be applied to s2 “ si`1 P S̄j to derive a state s3 P S̄jz ts2u

and a coalition K2 such that K2 P γ ps2, s3q and h ps3qP
1
K2
h ps2q where h ps2q “

x pi` 1, Rq. Suppose that s3 “ s1. Since S̄j is a rotation program, it follows
that S̄j “ ts1, s2u. Since F pR1q ‰ F pRq, it follows that s3 “ s1 ‰ si`2 P Sj .
It follows that there exists i2 P K2 such that h ps1qP 1i2h ps2q and h ps2qRi2h ps1q.
Thus, zP 1i2x pi` 1, RqP 1i1x pi, Rq and x pi` 1, RqRi2zwhere z “ h ps1q “ x pi, Rq P

Z. Suppose that s3 ‰ s1. Then, s3 P S̄jz ts1, s2u. Suppose that there exists
i2 P K2 such that h ps2qRi2h ps3q. Thus, there exists h ps3q “ z P Z such that
h ps3qP

1
i2
h ps2qP

1
i1
h ps1q and h ps2qRi2h ps3q , where h ps1q “ h psiq “ x pi, Rq and

h ps2q “ h psi`1q “ x pi` 1, Rq. Otherwise, suppose that h ps3qPK2h ps2q. Since
Sj is a rotation program, it follows that s3 “ si`2 P Sj and h psi`2q “ x pi` 2, Rq.
And, so on.

Since S̄j ‰ Sj , after a finite number 1 ď h ď m of iterations, s1, s2, ..., sh`1
states and i1, i2, .., ih agents can be derived such that s1, ..., sh P S̄j X Sj , with
h ps`q “ h psi``´1q “ x pi` `´ 1, Rq for all ` “ 1, ..., h, sh`1 P S̄j , h psh`1q “ z P Z

and for all ` P t1, ..., hu,h ps``1qP 1i`h ps`q and h pshqRihh psh`1q .

Case 2: si R MSS pΓ, R1q. By iterated external stability of MSS pΓ, R1q, there
exists a finite myopic improvement path from si to t P MSS pΓ, R1q; that is,
there are coalitions tK1, ..., Kq´1u and states tsi “ t1, t2, ..., tq “ tu such that
for all p “ 1, ..., q ´ 1, Kp P γ ptp, tp`1q and h ptp`1qP 1Kp

h ptpq . Since Γ implements
F in rotation program, the set MSS pΓ, R1q is partitioned in rotation programs
 

S̄1, ..., S̄m

(

such that h ˝ S̄i “ F pR1q for all i “ 1, ...,m. Then, there exists a
unique j such that tq P S̄j .

Step 1: Suppose that t2 ‰ si`1. Since Sj is a rotation program and si “ t1 P Sj , it
follows that there exists i1 P K1 such that h pt1qRi1h pt2q where h pt1q “ h psiq “

x pi, Rq. Therefore, h pt2qP 1i1h pt1q and h pt1qRi1h pt2q, as we sought. Otherwise,
suppose that t2 “ si`1 P Sj . If there exists i1 P K1 such that h pt1qRi1h pt2q, then
again h pt2qP 1i1h pt1q and h pt1qRi1h pt2q. Otherwise, suppose that t2 “ si`1 P Sj ,
h pt2q “ x pi` 1, Rq and h pt2qPK1h pt1q.

The reasoning used in the above Step 1 can be applied to t3 to conclude
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that either there exists i2 P K2 such that h pt2qRi2h pt3q for some i2 P K2 or
h pt3qPK2h pt2q and t3 “ si`2 P Sj .

In the former case, we have that h pt3qP 1i2h pt2qP 1i1h pt1q and h pt2qRi2h pt3q ,
where h pt1q “ x pi, Rq and h pt2q “ x pi` 1, Rq. In the latter case, we have that
h pt3q “ x pi` 2, Rq and h pt3qPK2h pt2q.

Since the myopic improvement path from si to t P MSS pΓ, R1q is finite, af-
ter a finite number 1 ď r ď q ´ 1 of iterations, we have that h ptp`1qP 1iph ptpq
for all p “ 1, ..., r, and either [h ptrqRirh ptr`1q for some ir P Kr] or [r “ q ´ 1,
h ptp`1qPKph ptpq and tp “ si`p´1 P Sj for all p “ 1, ..., r, and tq P Sj X S̄j]. In the
former case, we have that for all p “ 1, ..., r, h ptp`1qP 1iph ptpq andh ptrqRirh ptr`1q ,
where h ptpq “ h psi`p´1q “ x pi` p´ 1q for all p “ 1, ..., r. In the latter case, since
tq P S̄j , it follows that tq P MSS pΓ, R1q. Case 1 above can be applied to the out-
come h ptqq “ h psi`q´1q “ x pi` q ´ 1q P F pRq to complete the proof.

Proof of Theorem 3. The implementing rights structure is a variant of the rights
structure constructed in the proof of Theorem 1. What changes is only the def-
inition of Rule 1. The state space is S “ Gr pF q Y Z. The outcome function is
h px,Rq “ x for all px,Rq P Gr pF q and h pxq “ x for all x P Z. The code of rights
γ is defined as follows. For all i P N , all R P R and all s, t P S:

RULE 1: If s “ px pk,Rq , Rq and t “ px pk ` 1, Rq , Rq for some 1 ď k ď m, then
tiu P γ ppx pk,Rq , Rq , px pk ` 1, Rq , Rqq , where the outcomes x pk,Rq are those
specified by properties 1 and 2.

RULE 2: If s “ pz,Rq, t “ x and x P Li pz, Rq, then tiu P γ ppz, Rq , xq.

RULE 3: If s “ x and t “ pz, Rq, then tiu P γ px, pz, Rqq.

RULE 4: If s “ z and t “ x, then tiu P γ ps, tq.

RULE 5: Otherwise, γ ps, tq “ H.

Rule 1 allows agent i to be effective only between two consecutive socially
optimal outcomes at R, that is, between px pk,Rq , Rq and px pk ` 1, Rq , Rq for
all 1 ď k ď m. Fix any R. Let us show that Γ implements F in rotation pro-
grams. We first show that F pRq “ h ˝ MSSpΓ, Rq and then we show that Γ
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partitionsMSS pΓ, Rq in rotation programs such that for each rotation program
S, it holds that F pRq “ h ˝ S. To show that F pRq “ h ˝MSS pΓ, Rq and that
MSS pΓ, Rq “ M pRq Y U pRq Y Q pRq, we need to show that Lemmata 1-7 still
hold under the new rights structure Γ. It can be checked that the only proofs
that need to be amended are the proofs of Lemma 2 and Lemma 3. As far as
the proof of Lemma 3 is concerned, the arguments provided to prove Step 2 of
Lemma 3 no longer hold. However, the statement of this step is still true under
the new Γ. To show this, take any s “ pxpi, Rq, Rq P MpRq X V , which exists
by Step 1 of the proof of Lemma 3. We show that MpRq Ď V . Assume, to the
contrary, there exists s1 “ pxpi1, Rq, Rq P MpRq such that s1 R V . To complete
the proof of Lemma 3, let us first show that MpRq is a rotation program. Since
F is efficient and since R satisfies the restriction in (1), it follows that for all
1 ď k ď m and all px pk,Rq , Rq , px pk ` 1, Rq , Rq P M pRq, there exists j P N
such that x pk ` 1, RqPjx pk,Rq. By definition of Rule 1, it follows that for each
1 ď k ď m, there exists j P N such that tju P γ ppx pk,Rq , Rq , px pk ` 1, Rq , Rqq

and x pk ` 1, RqPjx pk,Rq. Moreover, by definition of γ, it follows that M pRq is
a rotation program because for each px pk,Rq , Rq, there do not exist any K P N0

and any s P S, with s ‰ px pk,Rq , Rq and s ‰ px pk ` 1, Rq , Rq, such that
K P γ ppx pk,Rq , Rq , sq and h psqPKx pk,Rq. Let us now complete the proof
of Lemma 3. Since for each 1 ď k ď m there exists j P N such that tju P
γppx pk,Rq , Rq , px pk ` 1, Rq , Rqq and x pk ` 1, RqPjx pk,Rq, it follows that there
exist s0, s1, ..., sp´1,sp, with s0 “ s and sp “ s1, and i0, ..., ip´1 such that ih P
γ psh, sh`1q and h psh`1qPihh pshq for all h “ 0, ..., p ´ 1, where sh P M pRq for all
h “ 0, 1, ..., p. Since s0 P MpRq X V and sp P M pRq zV , there exists the smallest
index h˚ P t0, ..., p´ 1u such that sh˚ P MpRq X V and sh˚`1 P M pRq zV . Since
ih˚ P γ psh˚ , sh˚`1q and h psh˚`1qPih˚

h psh˚q, this contradicts our initial supposi-
tion that V satisfies the property of deterrence of external deviations. Thus, we
have that M pRq Ď V , and so Lemma 3 holds as well.

As far as the proof of Lemma 2 is concerned, it needs to be amended as fol-
lows. Fix anyR1 P R. The proof of Lemma 2 holds if #F pRq ‰ 1 or if #F pRq “ 1

41



and F pRq R F pR1q. The reason is that in these cases rotation monotonicity im-
plies indirect monotonicity. To complete the proof of Lemma 2, let us suppose
that #F pRq “ 1 and F pRq P F pR1q. Suppose that F pRq “ tau ‰ F pR1q “

tz p1, R1q , ..., z pm,R1qu. Without loss of generality, let a “ z p1, R1q. Suppose that
Property M implies that for each z pi, R1q P F pR1q z tz p1, R1qu, there exist x P Z
and i1, ..., ih, with 1 ď h ď m, such that:

z pi` `` 1, R1qP``1z pi` `, R
1
q for all ` P t0, ..., h´ 1u and

z pi` h,R1qPhx and xR1hz pi` h,R1q .

By definition of γ, we have that for each z pi, R1q P F pR1q z tz p1, R1qu, there
exists a finite myopic improvement path from pz pi, R1q , R1q to x. Suppose that
U pRq ‰ H. Since F is efficient and since, moreover, R satisfies the restriction
in (1), it follows that U pRq “ tz p1, R1qu. Since by Rule 2 there exists a finite
myopic improvement path from x to z p1, R1q, it follows that there exists a finite
myopic improvement path from z pi, R1q P F pR1q z tz p1, R1qu to M pRq Y U pRq.
Suppose that U pRq “ H. Since Lemma 1 implies that there exists a finite my-
opic improvement path from x to M pRq Y U pRq, we conclude that there exists
a finite myopic improvement path from z pi, R1q P F pR1q z tz p1, R1qu to M pRq Y

U pRq. It follows from the definition of Q pR,R1q Ď M pR1q that Q pR,R1q “ H

if there exists a finite myopic improvement path from pz p1, R1q , R1q to M pRq Y

U pRq, otherwise, Q pR,R1q “ tpz p1, R1q , R1qu. In either case, we have that h ˝
Q pR,R1q Ď F pRq and that Q pR,R1q satisfies the property of deterrence of ex-
ternal deviations. Note that Q pR,R1q “ tpz p1, R1q , R1qu satisfies this property
for the following two reasons: 1) Since every agent i is effective in move the
state from pz p1, R1q , R1q to pz p2, R1q , R1q, it cannot be that z p2, R1qPiz p1, R

1q for
some i, otherwise, since we have already shown that there exists a finite my-
opic improvement path from pz p1, R1q , R1q to M pRq Y U pRq, it follows that
Q pR,R1q “ H, which is a contradiction; and 2) it cannot be that xPiz p1, R

1q

for some i and some x P Li pz p1, R
1q , R1q, otherwise, since Rule 2 implies that
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tiu P γ ppz p1, R1q , R1q , xq and xPiz p1, R
1q and since, moreover, Lemma 1 implies

that there exists a finite myopic improvement path from x toM pRqYU pRq, since
we have already shown that there exists a finite myopic improvement path from
pz p1, R1q , R1q to M pRq Y U pRq, it follows that Q pR,R1q “ H, which is a con-
tradiction. Suppose that the above arguments do not hold for some z pi, R1q P
F pR1q z tz p1, R1qu. Clearly, for each z pi, R1q P F pR1q z tz p1, R1qu such that the
above arguments hold, we have that there exists a finite myopic improvement
path from z pi, R1q P F pR1q z tz p1, R1qu to M pRq Y U pRq. Property M implies
that Li pz p1, R

1q , R1q Y tz p2, R1qu Ď Li pz p1, R
1q , Rq for all i P N . For each

z pi, R1q P F pR1q z tz p1, R1qu for which the above arguments do not hold, Property

M implies that there exists a sequence of agents i1, ..., i` such that

z p1, R1qPi`z pm,R
1
qPi`´1

¨ ¨ ¨ Pi2z pi` 1, R1qPi1z pi, R
1
q (2)

Since every agent i can be effective in moving the state from pz p1, R1q , R1q to
pz p2, R1q , R1q, it follows that no agent has an incentive to do so because z p2, R1q P
Li pz p1, R

1q , Rq for all i P N . Since, by Rule 1, each agent i P ti1, ..., i`u is
effective in moving between two consecutive states in M pR1q, it follows from
(2) that there exists a finite myopic improvement path from pz pi, R1q , R1q to
pz p1, R1q , R1q. We conclude that for each z pi, R1q P F pRq z tz p1, R1qu, there exists
a finite myopic improvement path from pz pi, R1q , R1q to either M pRq YU pRq or
to tpz p1, R1q , R1qu. It follows thatQ pR,R1q Ď tpz p1, R1q , R1qu. Again,Q pR,R1q “
H if there exists a finite myopic improvement path from pz p1, R1q , R1q toM pRqY

U pRq, otherwise, Q pR,R1q “ tpz p1, R1q , R1qu. In either case, we have that h ˝
Q pR,R1q Ď F pRq and that Q pR,R1q satisfies the property of deterrence of ex-
ternal deviations. Since the choice ofR1 P R is arbitrary, it follows that Lemma 2
holds. Since Properties 1-2 implies that Lemmata 1-7 hold, it follows thatF pRq “
h ˝MSS pΓ, Rq and that MSS pΓ, Rq “M pRq Y U pRq YQ pRq.

To show that Γ partitions MSS pΓ, Rq in rotation programs, we proceed ac-
cording to whether #F pRq “ 1 or not. We have already shown above thatMpRq
is a rotation program.
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Case 1: #F pRq ‰ 1. The set U pRq “ H. To see it, suppose that there exists
x P U pRq. Since F is efficient and since, moreover, R satisfies the restriction in
(1), it follows that F pRq “ txu, which is a contradiction. Thus, MSS pΓ, Rq “

M pRqYQ pRq. We have already shown above thatM pRq is a rotation program.
Moreover, by its definition, it follows that F pRq “ h ˝M pRq.

Fix any R1 P R such that F pR1q ‰ F pRq. We show that Q pR,R1q “ H. Fix
any z pi, R1q P F pR1q. Rotation monotonicity implies that there exist x P Z and a
sequence of agents i1, ..., ih, with 1 ď h ď m, such that:

z pi` `` 1, R1qPi``1
z pi` `, R1q for all ` P t0, ..., h´ 1u and

z pi` h,R1qR1ihx and xPihz pi` h,R
1
q .

Since, by Rule 1, for each ` P t0, ..., h´ 1u, ti``1u P γpz pi` `, R1q , zpi ` ` ` 1,

R1qq and since, moreover, by Rule 2, tihu P γ pz pi` h,R1q , xq, it follows that
there exists a finite myopic improvement path from pz pi, R1q , R1q to x. Since
U pRq “ H, Lemma 1 implies that there exists a finite myopic improvement path
from x toM pRq. Therefore, we have established that there exists a finite myopic
improvement path from pz pi, R1q , R1q toM pRq, and so pz pi, R1q , R1q R Q pR,R1q.
Since the choice of z pi, R1q P F pR1q is arbitrary, we have that Q pR,R1q “ H.

Fix any R1 P R such that F pR1q “ F pRq. Nothing has to be proved if
Q pR,R1q “ H. Suppose that Q pR,R1q ‰ H. We show that Q pR,R1q “ M pR1q

and that Q pR,R1q is a rotation program. Since F is efficient and since R sat-
isfies the restriction in (1), it follows that for all px pk,R1q , R1q , px pk ` 1, R1q ,

R1q P M pR1q, there exists j P N such that x pk ` 1, R1qPjx pk,R
1q. By definition

of Rule 1, it follows that for each 1 ď k ď m, there exists j P N such that tju P
γ ppx pk,R1q , R1q , px pk ` 1, R1q , R1qq and x pk ` 1, R1qPjx pk,R

1q. If there exists a
finite myopic improvement path from some px pi, R1q , R1q P M pR1q zQ pR,R1q

to M pRq Y U pRq, it follows that for each state in M pR1q there exists a finite
myopic improvement path to M pRq Y U pRq. This implies that Q pR,R1q “ H,
which is a contradiction. Thus, Q pR,R1q “ M pR1q. Since Lemma 2 implies

44



that Q pR,R1q satisfies the property of deterrence of external deviations, it fol-
lows that Q pR,R1q is a rotation program. Since the choice of R1 P R, with
F pR1q “ F pRq, is arbitrary, it follows thatMSS pΓ, Rq is the union of partitioned
rotation programs because for all R1, R2 P R such that F pR1q “ F pR2q “ F pRq,
it holds that h ˝ M pR1q “ h ˝ M pR2q and M pR1q X M pR2q “ H. Thus, F is
rotationally programmatically implementable.

Case 2: #F pRq “ 1. Recall that MSS pΓ, Rq “ M pRq Y U pRq Y Q pRq. Let
F pRq “ tz p1, Rqu. Note thatM pRq “ pz p1, Rq , Rq. Also, note that ifU pRq ‰ H,
it follows from the efficiency of F and the restriction of R in (1) that U pRq “
tz p1, Rqu. Note that M pRq and U pRq are rotation programs such that M pRq X

U pRq “ H. To proof is complete if we show that for allR1 P R, eitherQ pR,R1q “
H or Q pR,R1q “ tpz p1, Rq , R1qu. To this end, fix any R1 P R. Suppose that
F pRq “ tz p1, Rqu ‰ F pR1q. Let us proceed according whether F pRq P F pR1q
or not. Suppose that F pRq R F pR1q. Fix any z pi, R1q P F pR1q. By the same
arguments provided in Case 1 above, it follows that there exists a finite myopic
improvement path from pz pi, R1q , R1q to x. If U pRq ‰ H, then there exists a
finite myopic improvement path from pz pi, R1q , R1q to z p1, Rq P U pRq. Other-
wise, if U pRq “ H, Lemma 1 implies that there exists a finite myopic improve-
ment path from x to M pRq. Therefore, there exists a finite myopic improve-
ment path from pz pi, R1q , R1q to M pRq YU pRq, and so pz pi, R1q , R1q R Q pR,R1q.
Since the choice of z pi, R1q P F pR1q is arbitrary, we have that Q pR,R1q “ H.
Suppose that F pRq P F pR1q “ tz p1, R1q , ..., z pm,R1qu. Without loss of gener-
ality, suppose that z p1, Rq “ z p1, R1q. By arguing as we have done above in
the completion of the proof of Lemma 2, we have that either Q pR,R1q “ H or
Q pR,R1q “ tpz p1, R1q , R1qu, as we sought. �

Proof of Theorem 4. In light of Theorem 2, it suffices to show that F satisfies
properties 1 and 2. Since #F pRq ą 1 for all R P R̄, it follows that Property M is
vacuously satisfied. Therefore, let us show that F satisfies rotation monotonicity

as well. To this end, we need to introduce additional notation.
For all R P R̄ and all i P N , let Ni pRq denote the set of Pareto efficient
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allocations at R that assign j˚1 to agent i, with ni pRq representing the number of
elements in Ni pRq. Since J is a finite set, it follows that Ni pRq is a finite set. For
all R P R̄ and all i P N , let τ2 pi, Rq denote the second top-ranked job of agent i
at Ri. For all x P J̄ and all R P R̄, let x̄ pRq be a permutation of x such that (i)
the agent who obtains j˚1 at x, let us say agent i, obtains his second top-ranked
job τ2 pi, Rq at x̄ pRq; (ii) the agent who obtains agent i’s second top-ranked job
at x obtains j˚1 at x̄ pRq; whereas (iii) all other agents obtain the same job both at
x and at x̄ pRq. Formally, x̄i pRq “ τ2 pi, Rq if xi “ j˚1 , x̄j pRq “ j˚1 if xj “ τ2 pi, Rq,
and xh “ x̄h pRq for all h P Nz ti, ju.

The proof that F satisfies rotation monotonicity relies on the following lem-
mata.

Lemma 8. For all R P R̄ and all i P N ,
ř

jPNztiu

nj pRq ě ni pRq .

Proof of Lemma 8: The statement follows if we show that for all R P R̄ and all
i P N , there exists an injective function gRi from Ni pRq to Ť

jPNztiuNj pRq, that
is, if we show that for for all R P R̄ and all i P N , every two distinct elements
of Ni pRq have distinct images in Ť

jPNztiuNj pRq under gRi . Let us define gRi :

Ni pRq ÝÑ
Ť

jPNztiuNj pRq by gRi pxq “ x̄ pRq. Take any two distinct x, y P Ni pRq.
Then, gRi pxq “ x̄ pRq and gRi pyq “ ȳ pRq. Suppose that xj “ yj “ τ2 pi, Rq for
some j P Nz tiu. Since x ‰ y, it follows that xh ‰ yh for some h P Nz ti, ju.
It follows that x̄ pRq ‰ ȳ pRq. Suppose that xj “ τ2 pi, Rq and yh “ τ2 pi, Rq for
some h, j P Nz tiu such that h ‰ j. It follows that x̄ pRq ‰ ȳ pRq. Thus, gRi is an
injective function. ˝

Lemma 9. For all R P R̄, elements of F pRq can be ordered as x p1, Rq , ..., x pm,Rq,

with m “
ř

iPN ni pRq ą 1, such that for all k “ 1, ...,m (mod m), if xi pk,Rq “ j˚1

for some i P N , then xi pk ` 1, Rq ‰ j˚1 .

Proof of Lemma 9: Fix any R P R̄. Without loss of generality, let us assume
thatn1 pRq ě n2 pRq ě ... ě nn´1 pRq ě nn pRq . Let us apply the following proce-
dure to arrange allocations of F pRq in a way that the statement holds:
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Step 0: If n1 pRq ´ n2 pRq “ 0, then go to Step 1. If n1 pRq ´ n2 pRq “ k0 ą 0, then
take any A Ď N1 pRq such that #A “ k0. By Lemma 8, there exists 3 ď h ď n

such that řn
i“h ni pRq ě k0 and řn

i“h`1 ni pRq ă k0. Then, select any B Ď Nh pRq

such that řn
i“h`1 ni pRq ` #B “ k0. List elements of the set A and elements of

the set B Y
`

Yn
i“h`1Ni pRq

˘

in a way that no element of A stands next to another
element of set A. Start the list with an element of A Ď N1 pRq. By construction,
no two consecutive allocations of the list allocate j˚1 to the same agent.

Step 1: Then, n1 pRq ´ k0 ´ n2 pRq “ 0, with k0 ´ 0 if n1 pRq “ n2 pRq, and
that n1 pRq ´ k0 “ n2 pRq ě ... ě nh pRq ´ #B, where B “ ∅ and h “ n if
n1 pRq “ n2 pRq. Let nh pRq ´ #B “ k1. Construct a sequence txiuhi“1 of ele-
ments in Ťh

i“1Ni pRq z pAYBq (of length equal to h) such that xi P Ni pRq for
all i “ 1, ..., h. Thus, the sequence is constructed in a way that that no element
of Ni pRq stands next to another element of Ni pRq, and the last element of the
sequence belongs to Nh pRq. Since there are k1 sequences of this type, list these
sequences one after the other. By construction, no two consecutive allocations
of this arrangement allocate j˚1 to the same agent. Join this linear arrangement
to the right end of the arrangement of Step 0. If nh pRq´#B “ n1 pRq´ k0, then
the derived linear arrangement can be transformed into a circular arrangement
by joining its ends. Otherwise, move to Step 2. For each i “ 1, ..., h ´ 1, let A1i

denote the set of elements of Ni pRq used to construct the sequences. Thus, for
each i “ 1, ..., h ´ 1, #A1i “ k1 and Ni pRq zA1i is the set of allocations that still
needs to be arranged.

Step 2: Then, n1 pRq´k0´k1 “ n2 pRq´k1 ě ... ě nh´1 pRq´k1. Letnh´1 pRq´k1 “

k2. Construct a sequence txiuh´1i“1 of elements in

h
ď

i“1

Ni pRq z

˜

AYB Y

˜

h´1
ď

i“1

A1i

¸¸

(of length equal to h ´ 1) such that xi P Ni pRq for all i “ 1, ..., h ´ 1. Thus,
the sequence is constructed in a way that that no element of Ni pRq stands next
to another element of Ni pRq, and the last element of the sequence belongs to
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Nh´1 pRq. Since there are k2 sequences of this type, list these sequences one after
the other. By construction, no two consecutive allocations of this arrangement
allocate j˚1 to the same agent. Join this linear arrangement to the right end of
the arrangement of Step 1. If nh´1 pRq ´ k1 ´ k2 “ n1 pRq ´ k0 ´ k1 ´ k2, then
the derived linear arrangement can be transformed into a circular arrangement
by joining its ends. Otherwise, move to Step 4. For each i “ 1, ..., h ´ 2, Let A2i

denote the set of elements of Ni pRq used to construct the sequences. Thus, for
each i “ 1, ..., h ´ 2, #A2i “ k2 and Ni pRq z pA1i Y A2iq is the set of allocations
that still needs to be arranged.
...
Step `: Then, n1 pRq ´

ř`´1
i“0 ki “ n2 pRq ´

ř`´1
i“1 ki ě ... ě nh´p`´1q pRq ´

ř`´1
i“1 ki.

Let nh´p`´1q pRq ´
ř`´1

i“1 ki “ k`. Construct a sequence txiuh´p`´1qi“1 of elements in
Ťh´p`´1q

i“1 Ni pRq z
´

AYB Y
´

Ťh´p`´1q
i“1

Ť`´1
j“1Aji

¯¯

(of length equal to h´ p`´ 1q)
such that xi P Ni pRq for all i “ 1, ..., h´p`´ 1q. Thus, the sequence is constructed
in a way that that no element ofNi pRq stands next to another element ofNi pRq,
and the last element of the sequence belongs to Nh´1 pRq. Since there are k`
sequences of this type, list these sequences one after the other. By construction,
no two consecutive allocations of this arrangement allocate j˚1 to the same agent.
Join this linear arrangement to the right end of the arrangement of Step ` ´ 1.
If nh´p`´1q pRq ´

ř`´1
i“1 ki “ n1 pRq ´

ř`´1
i“0 ki, then the derived linear arrangement

can be transformed into a circular arrangement by joining its ends. Otherwise,
move to Step `` 1. For each i “ 1, ..., h´ `, Let A`i denote the set of elements of
Ni pRq used to construct the sequences. Thus, for each i “ 1, ..., h´ `, #A`i “ k`

and Ni pRq z
´

Ť`
j“1Aji

¯

is the set of allocations that still needs to be arranged.
...

Since the set of allocations is finite, the above procedure is finite and it pro-
duces a circular arrangement of elements of F pRq such that no two consecutive
allocations allocate j˚1 to the same agent. ˝

For each R P R̄, Lemma 9 implies that elements of F pRq can be ordered
as x p1, Rq , ..., x pm,Rq ,with m “

ř

iPN ni pRq ą 1, such that for all k “ 1, ...,m
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(modm), if xi pk,Rq “ j˚1 for some i P N , then xi pk ` 1, Rq ‰ j˚1 . Fix any R1 P R̄

such that F pRq ‰ F pR1q. We need to consider only the case that #F pR1q ą 1.
Suppose that for all x pi, Rq P F pRq, there do not exist any agent ` and any al-
location z P J̄ such that zP 1`x pi, Rq and x pi, RqR`z. This implies that for all
x pi, Rq P F pRq, L` px pi, Rq , Rq Ď L` px pi, Rq , R

1q for all ` P N . Since F is
(Maskin) monotonic, it follows that F pRq “ F pR1q, which is a contradiction.
Thus, for some x pi, Rq P F pRq, there exist an agent ` and an allocation z P J̄

such that zP 1`x pi, Rq and x pi, RqR`z. Fix any of such x pi, Rq P F pRq. Since by
construction of the set tx p1, Rq , ..., x pm,Rquwe have that for all k “ 1, ...m, with
k ‰ i, it holds that x pk ` 1, RqP 1jx pk,Rq for some j, it follows that x pi, Rq can
be reached via a myopic improvement path at R1 by any outcome in x pk,Rq P

tx p1, Rq , ..., x pm,Rqu z tx pi, Rqu. Thus, F satisfies rotation monotonicity.

Proof of Theorem 5. Observe that #φ pRq “ 2m, wherem is the number of such
allocations atRwhere all jobs except τ pR1q are assigned to agentsNzt1, 2u in an
efficient way (agent 2 getting the leftover). It follows that Property M is always
satisfied by φ and Corollary 3 applies. Thus it suffices to prove that rotation

monotonicity is satisfied.
Fix any R P R̂ and any x P φ pRq. Let x̂ be the allocation obtained from x

in which the job assigned to agent 1 under x is assigned to agent 2 under x̂, the
job assigned to agent 2 under x is assigned to agent 1 under x̂, whereas all other
assignments are unchanged. That is, x̂1 “ x2, x̂2 “ x1, and x̂i “ xi for every
agent i ‰ 1, 2. Observe that x̂ P φ pRq if and only if x P φ pRq. The next result
show that the efficient solution φ is implementable in rotation programs. This
result is obtained by requiring that the ordered set

φ pRq “ tx p1, Rq , x p2, Rq , ..., x p2n´ 1, Rq , x p2m,Rqu

satisfies the following properties for all i P t1, ..., 2mu: (1) If i is odd, then
x1 pi, Rq “ τ pR1q. (2) If i is even, then x2 pi, Rq “ τ pR2q. (3) If x pi, Rq “ x

and i is odd, then x pi` 1, Rq “ x̂. φ pRq is implementable in rotation programs
because we can devise a rights structure that allows agent 1 (agent 2) to be ef-
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fective in moving from the outcome x pi, Rq to x pi` 1, Rq provided that i is even
(odd). The reason is that agent 1 (agent 2) has incentive to move from x pi, Rq

to his top-ranked outcome x pi` 1, Rqwhen i is odd (even). To see that rotation

monotonicity is satisfied, fix any R1 such that φ pRq ‰ φ pR1q. This implies that at
least one allocation x pi, Rq P φ pRq is Pareto dominated atR1, that is, there exists
an allocation z such that zR1jx pi, Rq for each agent j P N and zP 1jx pi, Rq for some
agent j P N . We can proceed according to whether τ pR1q ‰ τ pR11q. Suppose
that τ pR1q ‰ τ pR11q. This implies that τ pR1q “ τ pR2q has fallen strictly in agent
j “ 1, 2’s ranking when the profile moves fromR toR1. This preference reversal
both agent 1 and agent 2 guarantees that rotation monotonicity is satisfied for ev-
ery x pi, Rq P φ pRq. Suppose that τ pR1q “ τ pR11q. We have already observed that
at R, it holds that x pi` 1, RqP2x pi, Rq if i is odd, and that x pi` 1, RqP1x pi, Rq

if i is even. In other words, there is the following cycle among outcomes in φ pRq:

x p1, RqP1x p2m,RqP2x p2n´ 1, Rq ¨ ¨ ¨ x p3, RqP1x p2, RqP2x p1, Rq

Since τ pRjq “ τ
`

R1j
˘

for j “ 1, 2, it follows that the above cycle also exists at
R1. Since φ pRq ‰ φ pR1q, we already know that there is at least one allocation
x pi, Rq P φ pRq that is Pareto dominated at R1. Since x pi, Rq is efficient at R, it
follows that x pi, Rq P φ pRq has strictly fallen in the preference ranking of at least
one agent j ‰ 1, 2 when the profile moves from R to R1. It follows that rotation

monotonicity is satisfied. ˝
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