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ABSTRACT

We study axiomatically recursive clustering methods for networks. Such
methods can be used to identify community structures of a network.
One of the methods is based on identifying a node subset that max-
imizes the average degree within this subset. Once such a subset is
found, the method is applied on the subnetwork whose node set is the
complement of the first cluster, and so on recursively. The method pro-
duces an ordered partition of the node set of the original network. We
give a list of axioms that this method satisfies, and show that any recur-
sive clustering method satisfying the same set of axioms must produce
the same or a coarser partition than our method.
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1. Introduction

We study axiomatically recursive clustering methods, or ”clustering func-

tions”, for weighted directed networks. These methods can be used to identify

community structures of such networks. Axiomatic analysis of this subject

is important because it forces researchers to think carefully what in their

opinion constitutes a community within a network.

A clustering function F defined and studied in this paper is based on iden-

tifying a node subset that maximizes the average degree within this subset.

Once such a subset is found, the method is applied on the subnetwork whose

node set is the complement of the first cluster (the ”main cluster”), and so on

recursively. This method produces typically an ordered partition of the node

set of the original network. The partition is interpreted as the community

structure this network. The recursive clustering methods studied here can

be viewed as belonging to the class of ”divisive hierarchical methods” (see

Fortunato 2010).

The function F satisfies axioms such as connectedness (clusters are con-

nected subsets), independence of irrelevant alternatives (reducing the weights

of links outside the main cluster does not affect the main cluster), and the

average degree monotonicity (the average degree within the main cluster can-

not be less than then the average degree of the whole network). We show

that if f is any clustering function satisfying these axioms, then f generates

the same partition or a coarser partition than F .

Kleinberg (2002) studies clustering methods from the axiomatic point of

view. Given a finite set X and any distance function d on X, Kleinberg’s

clustering function assigns to each d a clustering of X. Distance function

d satisfies the usual properties of a metric except that the triangle inequal-

ity need not be satisfied. He shows that there exists no clustering method

that satisfies three axioms: scale invariance, richness, and consistency. Scale

invariance says that clustering does not change if the distance function is

multiplied by a positive constant. Richness says that given any partition of a

finite set, there is some distance function that gives the members of that par-

tition as clusters. Kleinberg’s consistency axiom resembles the independence

of irrelevant alternatives axiom.
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There are ways to overcome this impossibility result. Ackerman and Ben-

David (2008) observed that the axioms are consistent when applied on the set

of clustering quality measures (sometimes called clustering quality functions).

Such a measure assigns a non-negative real number to every clustering C of

the space (X, d). Ackerman and Ben-David (2008) show that there are several

clustering quality measures that satisfy the axioms of Kleinberg.

There may be other ways to resolve the impossibility result, since Klein-

berg’s model does not cover all network models. In weighted networks, if

a link between two nodes has a large weight, the interpretation is that the

connection between these nodes is very strong, or that these nodes are very

similar.

On the other hand, a large value of distance d(i, j) means that nodes i, j

are far apart of each other, or that these nodes are very dissimilar. That

difference in interpretation need not be of importance: since the distance

has properties d(i, j) > 0 if i 6= j, and d(i, j) = d(j, i) for all i, j ∈ X.

But Kleinberg’s model does not cover all weighted or directed networks since

link weight may be zero between two distinct nodes and symmetry is not

necessarily satisfied (see Carlsson et.al. (2014) for an axiomatic analysis of

hierarchical clustering methods when d(i, j) = d(j, i) need not hold).

van Laarhoven and Marchiori (2014) study axiomatically clustering func-

tions and clustering quality functions on the set of weighted undirected net-

works, and show that Kleinberg’s axiom are consistent. In fact, a clustering

function that assigns to each network the partition into connected compo-

nents satisfies all the axioms. van Laarhoven and Marchiori (2014) give also

a list of reasonable axioms that any clustering quality function should satisfy

and note that the modularity does not satisfy all these axioms but a version

of it does (for modularity, see Newman and Girwan 2004).

The literature of clustering methods and community detection is growing

rapidly. For useful reviews, see for example Fortunato (2010) and Luxburg

(2007).

The paper is organized in the following way. In Section 2 notation, defi-

nitions and axioms are given. In Section 3 the results are stated and proved.
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2. Preliminaries

Let G = (V,A) denote a weighted network. Here V is a nonempty set of

nodes that are typically indexed by natural numbers, say V = {1, . . . , n},

and A is a nonnegative matrix representing the link structure. Denote by

aij the element of A that lies on i’th row and j’th column. If the network is

undirected, then the matrix A is symmetric: aij = aji for all i, j ∈ V . If A is

not symmetric, then G is directed, and the element aij is interpreted as the

strength of the directed link from i to j. If aij = 0 we interpret that there

is no link between i and j. In this paper we assume aii = 0 for all i, so we

ignore loops.

Let G denote the set of all weighted networks, and let Gu denote the set

of all undirected weighted networks. Given G = (V,A) ∈ G, G = (V,A) is a

subnetwork of G = (V,A), if V ′ ⊂ V and A′ is the restriction of the matrix

A to the node set V ′.

An undirected network G can be partitioned into connected components:

V = V1 ∪ · · · ∪ Vm such that each Vk is nonempty and connected, and v /∈ Vk

implies aiv = 0 = avi for all i ∈ Vk. Connectedness of Vk means that for each

i, j ∈ Vk there exists a path in Vk: there are nodes i = i0, . . . , it = j in Vk

such that there is link between im and im+1 for each m < t. If V is the only

component, then G is connected. This happens if A is irreducible: for each

i, j ∈ V there is some t ∈ N such that atij > 0, where atij is the ij -element

of the matrix At. A directed network can also be partitioned into connected

components if the directions of links are ignored.

If for each i, j ∈ Vk there is a directed path from i to j and from j to i

such that the whole path lies in Vk, then Vk is strongly connected. The node

set V of G = (V,A) can be partitioned into strongly connected components.

Singletons {v} are interpreted as members of that partition, if it holds that

{v} ∪X is not strongly connected for any strongly connected subset X ⊂ V

such that |X| ≥ 2.

Denote by P (G) the set of all nonempty partitions of the node set V of

G. If there is no possibility for mistakes about what G is, we may denote by

P (V ) the set of all partitions of V .

A function f defined by G −→ f(G) ∈ P (G) is called a clustering func-
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tion. In this paper we study recursive clustering functions f . These functions

generate an ordered partition f(G) = 〈C1, . . . , Cm〉 in the following way.

First f selects a nonempty subset C1 ⊂ V as the main cluster. If C1 6= V ,

then f selects a subset C2 ⊂ V \ C1 as the main cluster of the subnetwork

G′ = (N \C1, A
′), where A′ is the submatrix of A corresponding to the node

set V \C1. The recursion is continued until a subnetwork is found such that

the whole node set V \(C1∪· · ·∪Cm−1) is its main cluster Cm. It may happen

that some Ck ∈ f(G) is a collection of pairwise disjoint subsets instead of

being a unique subset. In that case it should be understood that the ordering

of f(G) is over the collections Ck ∈ f(G).

We adopt the notation
∑

S,T aij ≡
∑

i∈S

∑
j∈T aij, for any S, T ⊂ V . We

may denote the complement of S either by Sc or by V \ S. The cardinality

of S is denoted by |S|.

2.1. Axioms

Our first axiom says that the members C of the partition f(G) are con-

nected subsets. Strong connectedness seems to be overly restrictive property

for clusters. Take for example a directed star network on V = {1, 2, 3} such

that the node 1 is the center of the star, and the only links are 2 → 1

and 3 → 1. This network is connected since V is a connected compo-

nent, and the only natural cluster is V = {1, 2, 3}. But this network is not

strongly connected since the partition into strongly connected components is

{{1}, {2}, {3}}.

Axiom 1 (Connectedness). The members C of the partition f(G) are con-

nected subsets, for all networks G.

Connectedness implies that if C ∈ f(G) then C must be a subset of

some connected component of G. The following axiom is familiar from many

different contexts. Here it says that if a network is modified so that the link

strengths inside the main cluster do not change, but other links may get

weaker, then the original main cluster is the main cluster of the modified

network as well.

Axiom 2 (Independence of Irrelevant Alternatives). Given G = (V,A) and

its main cluster C1 ∈ f(G), let G′ = (V ′, A′) be such that (1) C1 ⊂ V ′ ⊂ V ;
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(2) A′ is the matrix A restricted to V ′ such that a′ij = aij for every i, j ∈ C1,

and a′ij ≤ aij for every i, j such that i /∈ C1 or j /∈ C1. Then C1 ∈ f(G′) is

the main cluster of G′ as well.

The following axiom states a necessary condition for a proper subset

S ⊂ V to be a main cluster of G = (V,A). It says that the average degree

within S must not be less than the average degree in the whole network.

Axiom 3 (Average Degree Monotonicity). Given a network G = (V,A) ∈ G,

if C1 ∈ f(G) is the main cluster of G, and C1 6= V , then

∑
S,S aij

|S|
≥

∑
V,V aij

|V |
,

the inequality being strict if V is connected.

This axiom is motivated by the following example.

Example 1. Take a directed network G = (V,A) such that V = {1, 2, 3, 4},

a12 = a21 = 1, a34 = a43 = 1, and aij = 0 for all other nodes. This network

is not connected and any cluster must be a subset of {1, 2} or {3, 4}. The

only reasonable partition is {{1, 2}, {3, 4}}, and the average degrees of these

subsets are the same as the average degree of the whole network. ✁

2.2. Clustering function F .

Given any nonempty S ⊂ V , let define v(S) by:

v(S) =

∑
S,S aij

|S|
.

Let

C1 ∈ argmaxS{v(S) | S ⊂ V, S is connected}, and (1)

Ck ∈ argmax{v(S) | S ⊂ V \ (C1 ∪ · · · ∪ Ck−1), S is connected},

with the qualification that if at any stage k = 1, . . . there are two (or more)

subsets S1, S2 that maximize v, and S1 ∪ S2 is a connected subset that also

maximizes v, then take their union. If on the other hand there are two (or

more) subsets S1, S2 that maximize v, but S1∪S2 is not connected, then take
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both S1 and S2 as members of the partition at that stage k. In this case it

is understood that Ck is a collection of disjoint subsets. In the next section

we will show that if S1 ∪ S2 is not connected, then both S1 and S2 cannot

maximize v.

In words, look at node subsets S and compute the sum of link strengths

within this subset, divided by the number of nodes in S, to get value v(S)

(sometimes called the density of S). Take as the first element of the partition

the subset C1 having the greatest v(S), etc recursively, with the qualifications

given about how to handle the cases with many maximizers. In other words

C1 is the subset such that the average degree (within C1) reaches its maximum

at C1 among all subsets S of V .

Denote by F the function that assigns such a partition to any network.

We will prove in the next section that F is a function, i.e., it generates a

unique partition to each G.

3. Results

Our first result states that F produces a unique partition.

Proposition 1. The mapping F is single valued: F (G) is a unique partition

for each G ∈ G.

Proof. See the Appendix.

The following proposition says that the function F satisfies all the axioms

presented in the previous Section.

Proposition 2. The recursive clustering function F satisfies axioms 1, 2,

and 3.

Proof. See the Appendix.

The following lemma will be useful in the proof of the main result.

Lemma 1. If a recursive clustering function f satisfies axioms 1, 2, and 3

on the set of directed weighted networks G, then for any G = (V,A) ∈ G, to

any main cluster C(f) generated by f for G there exists a cluster C generated

by F for G such that C ⊂ C(f).
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Proof. Suppose there exists a network G = (V,A) and a main cluster C(f)

generated by f for G such that C ⊂ C(f) does not hold for any cluster C

generated by F for G.

If there exists a main cluster C(F ) generated by F for G such that C(F )∪

C(f) is connected, then consider a network G′ = (V ′, A′) such that V ′ =

C(F ) ∪ C(f) and matrix A′ is the restriction of A to V ′. By the axiom 2,

independence of irrelevant alternatives, the main clusters generated by F and

f for G′ are C(F ) and C(f), respectively.

By the definition of F and equation (1), v(C(F )) > v(C(f)). But then

v(V ′) = v(C(F ) ∪ C(f)) ≥ v(C(f)) (see the proof of Proposition 1), a

contradiction with axiom 3, average degree monotonicity. Hence C(F ) ⊂

C(f) holds, a contradiction.

Therefore, if C ⊂ C(f) does not hold for any cluster C generated by F

for G, then C(F ) ∪ C(f) cannot be connected. Then take the least index

i such that Ci ∪ C(f) is connected for Ci ∈ F (G) = 〈C1, . . . , Ck〉. (If Ci is

a collection instead of a single subset, interpret Ci as being any member of

this collection.)

Suppose that Ci 6= C(f), and let G′ = (V ′, A′) be a network such that

V ′ = Ci ∪ C(f) and A′ is the matrix A restricted to V ′. By the axiom 2,

independence of irrelevant alternatives, the main cluster generated by f for

G′ is C(f).

By the definition of F and equation (1), v(Ci) > v(V ′), and hence Ci

is a main cluster generated by F for G′. Then by the same argument that

was used above for the case when C(F ) ∪ C(f) is connected, we get that

Ci ⊂ C(f).

The following theorem says that any recursive clustering function satis-

fying axioms 1, 2, and 3 will produce the same partition as F or a coarser

partition than F . It should be noted that this theorem does not say that the

ordered partition f(G) is the same as the ordered partition F (G).

Theorem 1. If a recursive clustering function f satisfies axioms 1, 2, and

3 on the set of all directed weighted networks G, then f generates the same

partition as F or a coarser partition than F , for any G ∈ G.
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Proof. Let then f be any recursive clustering function satisfying axioms 1,

2, and 3, and let G = (V,A) be any directed weighted network.

By Lemma 1, to any main cluster C(f) generated by f for G, there exists

a cluster C ∈ F (G) such that C ⊂ C(f). Let C ′ ∈ F (G) be any cluster such

that C ′ ∩ C(f) 6= ∅. By the same argument that was used in the proof of

Lemma 1, we can conclude that C ′ ⊂ C(f). Hence C(f) is a union of some

clusters C generated by F for G.

Consider a network G′ = (V ′, A′) such that V ′ = V \ C(f) for a main

cluster C(f) generated by f for G. The matrix A′ is the restriction of A to

V ′.

If V ′ contains a main cluster C∗ generated by f for G, then by indepen-

dence of irrelevant alternatives C∗ must be a main cluster generated by f for

G′ as well. By the definition of F , every cluster C ∈ F (G) such that C ⊂ V ′

must be a cluster generated by F for G′ as well. Hence C∗ is a union of some

clusters C generated by F for G′.

If V ′ does not contai any main cluster C∗ generated by f for G, then since

f is a recursive clustering function, the main cluster(s) C ′(f) generated by

f for G′ must be clusters of the original network G. It follows by Lemma 1

that for any main cluster C ′(f) generated by f for G′, there exists a cluster

C ′ ∈ F (G′) such that C ′ ⊂ C ′(f). The proof is completed by induction.

Remark 1. Given a network G = (V,A), index the nodes in V by natural

numbers 1, . . . , n where n = |V |. Modify the function F so that it chooses

as the main cluster C1 that subset S that maximizes v in equation (1) and

that contains the least index i if there are several maximizers. This function

will generate an ordered partition 〈C∗
1 , . . . , C

∗
m〉 such that each C∗

i is a unique

subset, and each C∗
i is a cluster in F (G) as well. ✁

Given a network G, let PF (G) = {f(G) | f satisfies the axioms 1, 2, 3}.

So PF (G) is the set of all partitions generated for G by at least one of the

functions satisfying axioms 1, 2, and 3. The following proposition says that

the axiom system in Theorem 1 is independent in the sense that if any one

of the three axioms is not assumed, then then there is clustering function f

and a network G such that f(G) /∈ PF (G)
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Proposition 3. If any one of the axioms 1, 2, and 3 is not assumed, then

there is a clustering function f satisfying the other two axioms such that that

f(G) /∈ PF (G), for some G = (V,A).

Proof. GivenG = (V,A), and F (G) = 〈C1, . . . , Ck〉, let f(G)) = 〈C∗
1 , . . . , C

∗
k〉

such that C∗
i is the union of subsets in Ci, i = 1, . . . , k. This f satisfies all the

other axioms except axiom 1, connectedness, and f(G) /∈ PF (G) for some

networks G.

Let f(G) be the partition of V into connected components. This f sat-

isfies all the other axioms except axiom 3, average degree monotonicity, and

f(G) /∈ PF (G) for some networks G.

Given G = (V,A), take a connected component K ⊂ V if V is not

connected. Index nodes of K by natural numbers 1, . . . , k, k = |K|. Choose

as the main cluster a connected subset C1 ⊂ K such that 1 ∈ C1 and C1

maximizes v given by equation (1). Let G′ = (V ′, A′), where V ′ = K \ C1

and A′ is the matrix A restricted to V ′. Take a connected component K ′

of V ′ if V ′ is not connected. Index K ′ by natural numbers 1, . . . , k′, where

k′ = |K ′|. Choose as the main cluster a subset C2 ⊂ K ′ such that 1 ∈ C2

and C2 maximizes v given by equation (1).

Continue in this fashion until the node set K is exhausted, and construct

an ordered partition 〈C1, . . . , Cm〉. This method satisfies the other axioms

except independence of irrelevant alternatives, and f(G) /∈ PF (G) for some

networks G.

Appendix

Proof of Proposition 1. Assume that at some stage of the equation (1) defin-

ing F , there are several maximizers of v(S). Let S and T be two of them.

Then ∑
S,S aij

|S|
=

∑
T,T aij

|T |
.

Assume first that S ∩ T = ∅. Consider the union S ∪ T , and note that

v(S ∪ T ) ≤ v(S) must hold, that is

∑
S,S aij +

∑
T,T aij +

∑
S,T aij +

∑
T,S aij

|S|+ |T |
≤

∑
S,S aij

|S|
, (2)
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since S maximizes v(S). After a couple of straightforward simplifying steps

we get that ∑
T,T aij

|T |
+

∑
S,T aij +

∑
T,S aij

|T |
≤

∑
S,S aij

|S|
. (3)

This inequality holds only if
∑

S,T aij = 0 =
∑

T,S aij, and then it holds as

an equality. In this case S ∪ T is not connected, and then by the definition

of F we take both S and T as members of the partition.

If
∑

S,T aij > 0 or
∑

T,S aij > 0 then inequality (3) cannot hold, a contra-

diction with the assumption that both S and T maximize v(S). That means

that if v(S) = v(T ), S∩T = ∅ and S∪T is connected, then v(S∪T ) > v(S).

Suppose next that S ∩ T 6= ∅. Note that S ∪ T is necessarily connected.

Then v(S ∪ T ) ≤ v(S) means that
∑

S,S aij +
∑

T,T aij +
∑

S\T,T\S aij +
∑

T\S,S\T aij −
∑

S∩T,S∩T aij

|S|+ |T | − |S ∩ T |
≤

∑
S,S aij

|S|
.

After a couple of straightforward simplifying steps we get that
∑

S,S aij

|S|
+

∑
S\T, T\S aij +

∑
T\S, S\T aij

|S ∩ T |
≤

∑
S∩T,S∩T aij

|S ∩ T |
. (4)

But since T maximizes v(T ), this inequality can hold only if

∑

S\T, T\S

aij = 0 =
∑

T\S, S\T

aij,

and then equation (4) holds as an equality. That means that also S ∩ T

maximizes v(S), and in fact it can be shown by a simple example that this is

possible. By the definition of F , S∪T is chosen as a member of the partition.

If there are several subsets S1, . . . , Sk maximizing v(S) such that their

union is connected, then the previous proof can be applied and the union

S1 ∪ · · · ∪ Sk should be chosen as a member of the partition.

Proof of Proposition 2. Assume first that the maximizers Ck in equation (1)

are unique subsets instead of a collections of subsets. Then the axioms 1, 2,

and 3 (connectedness, independence of irrelevant alternatives, and average

degree monotonicity) are satisfied by definition of F .

Assume then that C1 and/or some other Ck may consist of several clusters.

Then if A,B ∈ Ck and i ∈ A, j ∈ B, it holds that v(A) = v(B), and
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aij = aji = 0 (see the proof of Proposition 1). It is clear that F satisfies the

axioms also in this case.
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