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ABSTRACT

We present a model for the dynamics of networks in which edges rep-
resent positions in organizations, holders of which are connected to
each other when the positions belong to the same organization. Once
a vacancy is opened, the new employee can be hired from the current
network. In particular, it is possible that the further away a candidate
is in the network from the firm having the vacant position, the less
likely it is that the candidate is chosen. The search may also involve
preferential attachment in the sense that people with high numbers of
positions are more likely to be chosen. Microeconomic foundations of
the search process are presented. An empirical application to a board
interlock network demonstrates that the model is capable of explain-
ing how such networks are formed. It is observed that distances from
firms to candidates and the candidates’ numbers of positions drive the
process.
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1. Introduction

In general, it is widely accepted that social networks play an important
role in labour markets.∗ However, quantifying their impact and assessing how
exactly do the connections and peoples positions in the network affect their
labour market outcomes is still a major challenge. The question addressed
in this work is how the network channel in recruiting new people functions.
The main obstacle for studying this question is that the topology of social
networks is rarely observed at the scale that would allow for fitting and testing
any explicit model for role of networks. Boards of companies as well as board
appointments, on the other hand, are well documented. Hence, although the
labour market of corporate elite involves less than a percentage share of total
labour force, it is ideal for studying the network channel in the search of new
employees.

One of the challenges in analyzing the role of social networks in labour
markets is the endogeneity arising from the present network affecting the
future connections between agents. For example, a candidate who is found
in the social network through a small number of intermediary persons, e.g.,
through referrals, may get hired, which in turn creates new ties between
people and affects their prospects of getting new jobs in the future. Hence, the
formation of networks is the key to understanding the properties of observed
networks.

In this work the attention is on modeling the dynamics of two-mode
networks in which there is a fixed number of positions, holders of which are
connected to each other when the positions belong to the same organization.
In principle, there are two sets of nodes representing different social entities:
the individuals and the organizations. For example, in a board interlock
network, which is our main application, one set of nodes is composed of
board members, and the other of firms. These kinds of networks are known
as two-mode networks or affiliation networks. The networks analyzed in this
work are assumed to have more structure than just the division of agents
into groups and individuals. The additional element is the set of positions
or posts that is assumed to remain the same in time. In essence, each group
has a given number of positions that can be occupied by the individuals of
the network.

There is a variety of models for network formation and evolution, for an
overview see Jackson (2005) and Newman (2003). Our approach relies on a
search and matching type process, where once a vacancy is opened, the new

∗For an early work on the importance of social networks in the job search process see
Granovetter (1974).
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holder of the position is searched from the current network or the vacancy
is filled by choosing a person outside of the holders of current positions in
the network. Hence, the search process presented in this work resembles
the models of Jackson and Rogers (2007) and Bramoullé et al. (2012) that
involve search of new connections in the neighbourhoods of randomly met
nodes. In particular, the search is affected by the distance of people in the
network from the firm having the vacancy and the number of positions that
people have. The distance effect can result from a referral type of exchange
of information. The number of positions, on the other hand, may signal the
productivity of a candidate.

The search and matching in labour market networks has been widely
studied in economics literature, the topic is surveyd by Ionnides and Loury
(2004) and Topa (2011). For classical contributions on wage determina-
tion in search markets see Diamond (1981), Montgomery (1991, 1992), and
Mortensen and Vishwanath (1994). There is also substantial literature on
referrals as a method for finding workers, see Dustmann et al. (2016) and
Galenianos (2013) for recent works.

The search process presented in this paper has a number of distinguish-
ing features that make it different from network search models presented
in the previous literature. First, the focus is on the evolution of the net-
work, while in many of the labour market search models the actual network
structure plays no role or it is taken as exogenously given (Calvó-Armengol
and Zenou, 2005; Fontaine, 2008), see, however, Boorman (1975), Calvó-
Armengol (2004), and Galeotti and Merlino (2014) for notable exceptions.
Second, a crucial element of a two-mode network is that an individual may
hold several positions in different organizations at the same time. Page and
Wooders (2007, 2010) have studied the formation of this kind of networks in
which the other mode represents clubs and the individuals choose strategi-
cally their club memberships. The third feature in our approach is that the
set of individuals is not fixed; only the firms and the positions are assumed
to stay the same.

Our model is as such applicable to any two-mode network where the avail-
able positions are fixed. This situation is typical for representative bodies of
various organizations such as boards of companies or associations, editorial
posts of journals, or various bodies of parliamentary systems (Porter et al.,
2005). Collaboration networks, in which each member of a team has a partic-
ular role (Uzzi and Spiro, 2005), can be treated as two-mode networks with
fixed numbers of available positions. In this work the attention is on board
interlock networks, which have raised a lot of attention in social sciences be-
ginning from the works of Galaskiewicz and Wasserman (1981) and Mintz
and Schwartz (1981).
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From an economics point of view board interlock networks or interlock-
ing directorates are interesting for several reasons. Social networks affect
market outcomes (Granovetter, 1973; Rees, 1966)—in particular, as argued
by Saloner (1985), networks improve the quality of the director-management
match, and hence corporate performance. On the other hand, social networks
may have a detrimental effect to corporate governance (Hallock, 1997; Fich
and Shivdasani, 2006; Kramarz and Thesmar, 2013), while at the same time
there is evidence that companies with highly networked boards may perform
better (Larcker et al., 2013). The role of networks on the careers of peo-
ple in top corporate positions has been documented in several studies; e.g.,
Engelberg et al. (2013) and Liu (2014) show a statistical relation between
labor market prospects (earnings, turnover) and connectedness, Berardi and
Seabright (2011) present a dynamic model for the coevolution of careers and
professional networks, and Lalanne and Seabright (2016) find a causal impact
on connections to remuneration.

The main advantage of a structural model, such as the one presented in
this paper, is that it allows for carrying out counterfactual analysis. For
instance, using our model it is possible to compare the outcomes when the
distance of a candidate to a firm with a vacant position has either no effect
at all or the search is restricted to firms’ immediate neighborhoods. This
is related to the question whether the role of board interlock networks is
to transmit information regarding the quality of potential board members
or whether the connections in the network just allow for an exchange of
favors. In the latter case, one might expect that favors are exchanged only
between board members that directly know each other, implying that the new
board members hired through the network channel would mainly come from
firms’ immediate neighborhoods. Our empirical findings support the former
explanation that the network transmits information on candidates quality;
there is no exceptional peak at board nominations from distance one, and
a model where the variance of candidates’ productivity signal is linear as a
function of distance leads to a good fit for the observed distance distribution.

This paper is structured as follows. Section 2 introduces the two-mode
networks with given set of positions and the basic concepts used in the paper.
The model for the evolution of the network is presented in Section 3, and
its microeconomic foundations are studied in Section 4. We also discuss the
extensions of the model to a more standard labor market setting where some
people are unemployed and the search is carried out through connections
of people in a standard one-mode network. Fitting the model to data is
discussed in Section 5. Section 6 presents an empirical application which
demonstrates that the model is able to capture the main features of a real
world network and matches the observations that new board members are
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found relatively close to the current board in the interlock network and they
tend to hold multiple positions. Conclusions are discussed in Section 7.

2. Two-Mode Networks with Firms and Individuals

In a two-mode network there are two kinds of actors. In this paper these
actors are assumed to be firms and individuals. There is a finite set of firms F
with given positions V . Each position v ∈ V is assumed to be held by some
individual. The set of individuals is denoted by I. Each position belongs
to some firm, let fv stand for the firm having the position v ∈ V . The
positions belonging to the firm f ∈ F are V F (f), and the positions held by
the individual i ∈ I are V I(i). Individuals holding positions in firm f are
denoted by the set I(f).

Two positions are linked to each other if the same person holds them.
Such persons are called interlockers. In particular, each v ∈ V corresponds
to a list of other positions held by the holder of v. Let Vv denote this list. In
the following nv = |Vv| is the total number of positions held by the person
who occupies the position v. It is assumed that if a position in a firm is held
by some individual, all the other positions of that firm are occupied by some
other people.

As an example, consider a network of nine positions labelled with v1, . . . , v9

and the set of firms F = {a, b, c}. The positions v1, . . . , v3 belong to firm
a, v4 and v5 belong to firm b, and the rest of belong to c. Hence, fvj = a
for j = 1, . . . , 3, fvj = b for j = 4, . . . , 5, and fvj = c for j = 6, . . . , 9.
Moreover, assume that there are seven individuals I = {1, . . . , 7} such that
the first three have a position in firm a, the last four have a position in
firm c, and individuals 1 and 4 hold also positions in firm b. The two-mode
network corresponding to this example is illustrated in Figure 1. Note in
particular that individuals 1 and 4 are interlockers with V I(1) = {v1, v4}
and V I(4) = {v5, v6} or Vv1 = Vv4 = {v1, v4} and Vv5 = Vv6 = {v5, v6}.

Note that in essence each position corresponds to an edge between a firm
and an individual. What is crucial is that the number of these edges is
limited, because each firm as a limited number of positions. When it comes
to the particular application on board interlock networks, the board size or
its upper and lower bounds are usually set in the corporate by-laws. Hence,
the number of positions in board interlock networks is relatively stable, but
different companies may have different number of board members.†

†The size of the board is known to be related to the firm performance, see, e.g., Cheng
(2008).
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a b c

1 2 3 4 5 6 7

Firms

Positions

People

v1

v2 v3

v4

v5 v6 v7 v8 v9

Figure 1: Example of a two-mode network with positions as edges. The interlockers are
indicated with black circles.

The holders of positions form a network; people having positions in the
same firm are connected to each other, and two firms sharing a common
individual are connected to each other. To describe the network composed
of positions and their holders let us first consider the neighbourhoods of
available positions in the network.

The immediate neighbours of v ∈ V consist of all positions in the firm fv,
i.e., it is the set N0(v) = V F (fv). The one-step neighbourhood of v contains
all the positions in the firms which have board interlocks with the firm;

N1(v) = ∪{V I(i) : i ∈ I(fv)}.

Higher order neighbourhoods, the k-step neighbourhoods for k ≥ 2, are ob-
tained the same way;

Nk(v) = ∪{V I(i) : i ∈ I(fw), w ∈ Nk−1(v)} .

In other words, w ∈ Nk(v) corresponds to at most k interlockers through
which v is connected to w.

To clarify the concept of a k-step neighbourhood let us continue the previ-
ous example. Regardless of the holders of the positions, the zero-step neigh-
bourhoods are N0(v

j) = {v1, v2, v3} for j = 1, 2, 3, N0(v
j) = {v4, v5} for

j = 4, 5, and N0(v
j) = {v6, . . . , v9} for j = 6, . . . , 9. The k-steps neighbour-

hoods are

N1(v
j) = {v1, . . . , v5} for j = 1, 2, 3,

N1(v
j) = V for j = 4, 5,

N1(v
j) = {v4, . . . , v9} for j = 6, . . . , 9,
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a) Projection to individuals

2

3 5

6

7

1 4

b) Projection to firms

a b c

Figure 2: Example of projections of a two-mode network.

and N2(v
j) = V for all j = 1, . . . , 9.

Let N(v) denote the list of all non-empty neighbourhoods of v ∈ V . To
be specific, N(v) = (N0(v), N1(v), . . . , Nn−1(v)). A neighbourhood configu-
ration at time t is the ordered list {N(v)}v∈V . Because there are finitely many
positions, there are also finitely many neighbourhood configurations. The set
of all possible neighbourhood configurations is denoted by N . The projection
of N ∈ N to the neighbourhoods of v is N(v) with the corresponding space
Nv.

If w is found in some k-step neighbourhood of v but is not found in any
j-step neighborhood for j < k, then the distance between v and w is dw,v = k.
If v is not found from any k-step neighbourhood of w, then dw,v is set to d∞.
In the previous example dv1,vj = 1 for j = 4, 5, and dv1,vj = 2 for j ≥ 6.

A two-mode network can be transformed or projected into networks cor-
responding to the different modes. For example, the network in Figure 1 can
be projected into a network of individuals and a network of firms. These
projections are illustrated in Figure 2. Observe in particular that the pro-
jection into individuals is basically a social network of people affiliated with
the firms. In principle, we could operate with such one-mode social networks
when considering the search of a new person to a vacant position. This
would, however, be somewhat more complicated in the context of our main
application. Namely, in board networks it is essential how many positions a
person has, and how far from a company does the new person come from.
For a social network, such as that illustrated in the left panel of Figure 2,
these relations are not apparent anymore.

The main reason for working with a two-mode network rather with its
one-mode projection into a network of individuals is that the opening and
filling of vacant positions will simply mean rewiring an edge in the two-mode
network and it is easy to keep track of peoples’ affiliations. For example,
assume that person 6 in Figure 1 is replaced. In the projected network of
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the left panel of Figure 2 this would mean that node 6 is removed and all
the edges to that node are to be rewired to the same node. Hence, instead
of rewiring only one edge we would have to take care of rewiring all the
edges there were to a removed node, and we would also need to keep track
of peoples affiliations to different companies — information that is apparent
in the two-mode representation.

We emphasize that although it is more convenient to describe our model
for two-mode networks, it can be extended to ordinary one-mode social net-
works by keeping track of peoples’ affiliations and taking care that all rele-
vant edges are rewired when vacancies are filled. Note in particular that the
distance between two positions could be expressed in terms of the distance
between individuals in the projected network. For example, the distance be-
tween v2 and v4 in Figure 1 can be obtained by taking the distance between
individuals 2 and 5 in the projected network of individuals and subtract-
ing one from this number, .i.e., the distance is 4 − 1 = 3 as in the original
two-mode network.

3. Evolution of Two-Mode Networks through the Filling of Vacan-
cies

This section presents a model for the dynamics of two-mode networks
with a given set of positions that are opened and filled as time goes on.
As described in the previous section, the network is essentially determined
by its neighbourhood configuration at each time instant. The purpose is to
present simple probabilistic rules updating the neighbourhood configuration.
It is assumed that time is discrete and it is indexed with t = 0, 1, 2, . . .. All
variables that depend on the network, such as neighbourhoods of positions,
are indexed with t, whenever needed.

The model for the evolution of two-mode networks is essentially a stochas-
tic process for the edges and vertices of the network. The edges correspond
to firm-individual pairs in which the individual holds a vacancy in the firm,
and the vertices correspond to firms and individuals. Most of the existing
models for network formation involve only dynamics of edges, while the set
of possible vertices is kept fixed. Alternatively, it is often assumed that the
network is growing as in the preferential-attachment model of Barabási and
Albert (1999).

In our model there is no limited pool of people holding the positions.
When time goes on arbitrarily many people may have held a position. How-
ever, the network is not growing because the number of positions is kept
fixed. In essence, the opening and filling of vacancies corresponds to rewiring
of edges of a two-mode network. See Evans and Plato (2007) for edge rewiring
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with a fixed set of agents, and Lafond (2015) for a model where the number
of vertices in one of the modes is fixed while in the other mode the vertices
are taken from a finite population.

An important assumption in out work is that the previous period network
determines the probabilities of getting chosen to a vacant position. Hence,
we do not assume that there is any longer memory in the affiliations. For
example, a person who has a position only in firm a in year 1, and a position
only in firm b in year 2 is not creating an interlock between firms a and b.
Moreover, these past connections are not assumed to affect how the network
evolves in the future.

3.1. Opening and filling of vacancies

It is assumed that vacancies open at random, the probability for position
v ∈ V to open in period t is Po(N

t(v)). Note that the dependency on N t(v)
means that the probability of opening the vacancy may depend on the number
of positions that the previous holder of the position has had or how many
people the holder is connected to. If none of the positions held by the holder
of v is opened then the list of positions held by this individual remains the
same; V t+1

w = V t
w for all w ∈ V t

v .
In practice, opening a vacancy means that someone leaves a position. In

this work we do not consider the possibility of opening completely new posts.
As mentioned it is assumed that vacancies open at random, while in practice
there can be different reasons for someone to leave a position; people move
from one job to another, they are kicked out, or they are obliged to leave
after holding the position for a certain period of time. When a firm decides to
replace someone, there are typically costs—especially search costs—related to
such a decision, and these costs certainly affect the probability Po. However,
in this work we do not explicitly consider the microfoundations of Po.

When a vacancy opens, its holder is changed to a new person taken either
outside of the current holders of available positions in the network or from
the set of holders of other positions. The first case leads to V t+1

v = v, i.e., the
only position held by the new holder is v. Hence, the list of positions held
by the holder of position w ∈ V t

v is updated such that v is removed from V t
w.

In the second case, when the new person for the vacancy v is chosen among
the holders of other positions, there is some position w /∈ V t

v holder of which
gets the position v. In this case V t+1

w is appended with v.
Recall that each position corresponds to an edge of the two-mode net-

work. Hence, opening and filling the vacancies can be interpreted as an
edge rewiring process, where the rewiring probabilities are conditional on the
properties of edges, and the number and labels of nodes in the other mode
of the two-mode network are not fixed.
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Let us now make assumptions on the probabilities of opening and filling
vacancies:

(A1) v ∈ V opens with probability Po(N(v)) such that Po(N(v)) > 0 for any
N(v) ∈ Nv.

(A2) the vacancy is filled outside of the holders of other positions with prob-
ability Pn > 0,

(A3) if v is filled from the set of holders of other positions, then the proba-
bility of choosing the holder of w ∈ V \Vv, is Ph(N(w), N(v)) such that
Ph(N(w), N(v)) > 0 if dw,v ≥ 1, and Ph(N(w), N(v)) = 0 if dw,v = 0.

The first two assumptions mean that there are two channels that can be
used to fill a vacancy: the network channel described by Po and the more
conventional labor market channel described by Pn. The last assumption
means that there is a search and matching process which determines the new
holder of a position. The holder of w is matched with the firm fv with a
probability that depends on positions of the holder of w in the network and
how these positions are related to the neighbourhoods of the vacancy to be
filled. Note that having Ph(N(w), N(v)) = 0 if dw,v = 0 means that v cannot
be filled by any person already affiliated with the firm fv. What is essential
in the assumption (A3) is that the immediate neighbourhood of a vacancy
affects how it is filled.

Let us now consider more specific functional dependencies for the proba-
bilities Po and Ph. First, if Po depends only on nv, let us denote Po(nv), and is
a decreasing function, then there is preferential attachment in the sense that
a position is less likely to be opened if its holder has several other positions.

One particular functional form for Ph is obtained by assuming that Ph

depends only on the distance and degree, i.e., Ph (nw, dw,v). If Ph is increasing
in its first argument, a person holding several positions is more likely to get
the position v. Again this is a form of preferential attachment. On the other
hand, if Ph is decreasing in its second argument, there is a form of peer
referral; a holder of a position that is found in a close neighbourhood of the
vacancy is more likely to become the new holder. In particular, when the new
person is found from distance one, there is a triadic closure; the new holder
of the position is known by someone in the same board with the previous
holder of the position.

The first observation on the above dynamic system is that it describes a
Markov chain over the neighbourhood configurations. Let P (N t+1|N t, . . . , N0)
stand for the conditional probability of a configuration N t+1 in period t+ 1.
The Markov property means that P (N t+1|N t, . . . , N0) = P (N t+1|N t) for any
N t+1, N t, . . . , N0 ∈ N . Moreover, the process is irreducible; it is possible to
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get from one neighbourhood configuration to any other configuration with a
positive probability.

Proposition 1. Under assumptions (A1)–(A3) the stochastic process of neigh-
bourhood configurations is an irreducible Markov chain.

The above result, proved in Appendix A, implies that the stochastic pro-
cess over the neighbourhood configurations has a unique stationary distri-
bution. Note that the number of possible neighbourhood configurations,
although finite, can be extremely high, which means that in practice it is not
the neighbourhood configurations that can be tracked but some statistics
that depend on them. Irreducibility of the Markov chain implies that the
time average of any statistics that depends on neighbourhood configurations
converges with probability one. In particular, the time averages of distances
and degrees of new board members converge.

3.2. The exponential search model

A particular functional form for the probability Ph by using the exponen-
tial function as in the multinomial logistic regression:

Ph(N(w), N(v)) = exp [a(dw,v) + b(nw)] /C, (1)

where C is a constant such that summing the probabilities over the candidates
is one;

C =
∑

w∈V
dw,v≥1

exp [a(dw,v) + b(nw)] .

In Section 5 it is assumed that the functions in the exponential search
model are

a(d) = −αd, (2)

b(n) = βmin{n,K}/K, (3)

Notice that K indicates the largest relevant number of positions. If the
number of positions is larger than K, the effect of is the same as if it was K.

In addition to assuming exponential function for Ph we could assume that
Po takes the exponential for as well:

Po(N(v)) = p0 exp[c(nw)],

where p0 > 0 is a constant such that Po(N(v)) ≤ 1. However, in the specific
case when Po depends on the number of positions that the holder of v has,
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the empirical probabilities Po(nv) can be estimated relatively easily and there
is no need to assume any specific functional form for Po.

The model resulting from equations (2)–(3) is flexible enough for produc-
ing both realistic degree distribution and networks with small-world proper-
ties such as high clustering coefficient. In particular, a large value of β would
imply a high probability of vacancies filled with people having a large number
of positions, which is likely to lead to a small-world network. On the other
hand, a large value of α would imply a high probability for the new person
to be close to the holders of the positions in the same firm, which is likely to
lead to a highly clustered network.

The exponential form in equation (1) resembles other probabilistic models
for network formation such as the stochastic actor-oriented model of Snijders
(2001) and exponential random graphs (Wasserman and Pattison, 1996).
However, we emphasize that the exponential search model is not a specific
case of either of these two families although they are applicable for two-mode
networks (Koskinen and Edling, 2012; Wang et al., 2009). It is also worth
observing that similarly as for stochastic actor oriented models or exponen-
tial random graphs, it is possible include node specific affects into the model
leading to a more general formulation:

Ph(w, v) = exp

[

∑

i

θigi(w, v)

]

/C,

where function gi describe the characteristics of holders of positions w and
v. For example, characteristics of w and v that could be of interest are the
industries of the firms having the positions, or the age and gender of the
holders of w and v. On the other hand, we could also include properties
related to the pair (v, w), such as an indicator whether the person holding w
has previously been in a board that has nominated any person in the board
of firm fv. This kind of favor exchange can be one of the motives to nominate
certain people.

4. Microeconomic Foundations

In this section we present simple microeconomic foundations for the prob-
abilistic model that describes the filling of vacancies. It is assumed that when
a firm opens a vacancy and searches for a person to fill it, there are two op-
tions: either the firm hires someone who already has a position or someone
who is not holding any other position. In the former case the new person can
either be found from searching through then neighbourhoods of the holders
of the positions of the firm, or outside of any of the neighbourhoods.
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The microeconomic foundations are build upon productivity signalling,
where the quality of the signal depends on the distance of two positions and
on the number of positions that people have. We emphasize that there may
also be other forces that affect the evolution of the network such as favor
exchange. However, in this work we only focus on the two simple features
related to the topology of the network: the distance and the number of
positions.

4.1. Productivity signalling

As is typical in the search and matching literature, it is assumed that the
productivity of each person is unknown but the firm gets a private signal on it.
Note that in the framework of this paper, productivity can also be interpreted
simply as a variable describing how suitable a person is for carrying out
the task related to a vacancy. Let s(n, d) ≥ 0 stand for the signal of the
productivity of person holding n ≥ 1 positions and located on the distance
d ≥ 1 from the firm. Recall that nv stands for the number of positions held
by the holder of position v.

It is assumed that the payoff from hiring a person with productivity z ≥ 0
is u(z) for each firm. To be specific, u is the firm’s von Neumann-Morgenstern
utility function. In economics it is common to assume that firms are risk
neutral since the shareholders can efficiently diversify away any firm-specific
risks via the stock market. In that case u would be a linear function of z.
In particular, when it comes to firms’ investment decisions risk neutrality
is a prevailing assumption. However, there are several reasons why firms
may behave in a risk-averse manner. The ownership can be concentrated,
which is especially the case for family businesses (Czarnitzki and Kraft, 2009),
or the control is delegated to risk averse managers (Brenner, 2015). We
also emphasize that the choice of a new board member is not necessarily
comparable to an investment decision. Hence, even a publicly listed company
may exhibit risk aversion when it comes to the choice of a new board member.

When a firm receives a signal s(n, d), the productivity z becomes a ran-
dom variable with expected value s(n, d) and variance determined by n and
d. The signals are drawn from the productivity distribution that may depend
on n and d. However, the ex-ante distribution, i.e., distribution of a signal
drawn for a randomly selected person, is the same as the productivity distri-
bution of the whole population of all holders of positions. In the extreme case
when the signal is completely uninformative, the productivity distribution is
the same as the distribution of productivity after the signal.

The firms’ expected payoff is E[u(z)|s(nw, dw,v)] from hiring the holder
of position w ∈ V to the vacancy v. The firm is assumed to know the
distribution of signals and productivity. In practice, the firm may obtain the
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information through communicating with the peers of the person affiliated
with the firm. As a result, a candidate may get a referral for the job.

In the simplest case, the search for a person to a vacancy is costless, which
entails that the firm hires a person with the highest expected payoff. Let s1

denote the highest signal of a person outside of holders of current positions.
It is assumed that s1 is drawn from some distribution known by the firm.

Let us briefly consider the other side of the market. It can either be
assumed that people who are offered a position always accept the offer, or
they can reject the offer and wait for new offers to arrive. When all the firms
are similar and there is no cost of holding multiple positions at the same
time, it can be assumed that a person always accept the offer. For simplicity
let us assume that this is the case. Note that in the latter case, a person may
find it better to reject an offer and wait for a new offer if it is likely that some
”better” firm will make one in the future. In other words, when it is costly
to hold many positions and firms are different, for instance larger firms pay
higher salaries, there can be an option value in waiting for new offers.

Let us now return to the filling of vacancies under the assumption that
offers are always accepted. In this case the firm hires a new person to v with
signal s1 outside of holders of positions in the network, when

E[u(z)|s1] > max{E[u(z)|s(nw, dw,v)] : w ∈ V }.

On the other hand, the holder of position v′ ∈ V is hired if the choice v′

maximizes E[u(z)|s(nw, dw,v)] over w ∈ V and

max {E [u(z)|s(nw, dw,v)] : w ∈ V } ≥ E
[

u(z)|s1
]

.

If there are multiple maximizers we can assume that the new person is taken
randomly among them.

The search and matching process as described above determines the prob-
abilities Pn and Ph. To be specific, Pn and Ph are the ex ante probabilities of
hiring a person outside of the network or a person who already holds one of
the positions in the network, i.e., probabilities prior to a firm receiving any
signal. The distributions of signals affect the properties Ph. To analyze these
properties some concepts are needed. The first is a mean preserving spread.
The signal s1 is said to be mean preserving spread of s2 if the distribution
of s1 is the same as the distribution of s1 + q where E[q|s1] = 0. This means
that the expected value of s1 is the same as the expected value of s2 but the
variance of s1 is at least the same as the variance of s2. When s1 is a mean
preserving spread of s2, we can say that s2 is a more informative signal.

The second concept that is needed is the first order stochastic dominance.
The signal s2 has the first order stochastic dominance over s1 if there is a
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random variable q such that q ≤ 0 and the inequality is strict at least in one
state, and the distribution of s1 equals the distribution of s2 + q. In other
words, the expected value of s1 is lower than the expected value of s2 while
the variance of s1 is at least the same as the variance of s2.

Assume that the information on candidates comes through referrals. In
that case the information on candidates becomes less reliable the more there
are intermediaries in the communication, which results on the signal becom-
ing less informative when the distance increases. This property is captured
in the mean preserving spread; the signal s1 is less informative than s2 if s1

is a mean preserving spread of s2.
If the firm is risk averse and the signal becomes less informative the further

away the vacancy is from the firm, then the resulting probability of a match
is a decreasing function of the distance. The proof is presented in Appendix
A.

Proposition 2. Assume that nv1 = nv2 for v, v1, v2 ∈ V , v 6= vi, i = 1, 2,
and v1 6= v2. If the firm is risk averse and the distribution of s (nv1 , dv1,v) is a
mean preserving spread of the distribution of s (nv2 , dv2,v) when dv,v1 > dv,v2,
then the probability Ph of the holder of v1 being chosen to the vacancy v is
no larger than the corresponding probability for the holder of v2.

The number of positions held by a person may signal the productivity
of a candidate. In particular, having more positions may signal a person’s
ability and hence impact positively the productivity signal. One explanation
to higher productivity due to being in several boards comes from the access
to more information (Mizruchi, 1996). On the other hand, there is also a
mechanism acting to other direction; a high number of positions may signal
low productivity of the candidate when assigned to one more board. In either
case, the first order stochastic dominance can be used in capturing the effect
of number of positions (”degree”) in the productivity signal. The proof of the
following result can be found from Appendix A.

Proposition 3. Assume that dv1,v = dv2,v for v, v1, v2 ∈ V , v 6= vi, i = 1, 2,
and v1 6= v2. If the firm is risk averse and the distribution of s (nv2 , dv2,v)
has the first order stochastic dominance over the distribution of s (nv1 , dv1,v)
when nv2 > nv1 (alternatively when nv2 < nv1), then the probability Ph of the
holder of v1 being chosen to the vacancy v is no larger than the corresponding
probability for the holder of v2.

4.2. Foundations of the exponential search model

In this section we consider the exponential search model of Section 3.2.
The purpose is to give simple assumptions for firms’ preferences and private
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information that lead to the exponential search model. As will be shown,
the probability of the form (1) for filling a vacancy arises when the firms are
assumed to have a common constant absolute risk aversion utility (CARA)
utility function, the productivity is normally distributed, and the firms get
private signals on productivities of each candidate that are type I extreme
value distributed.

As before, I is the set of candidates available for a vacancy. The set of
firms is F . In the following ni stands for the number of positions held by
i ∈ I, and di,k stands for the distance of i ∈ I from the firm k ∈ F . Note
that ni = |Vvi | where vi is any position held by i, and di,k = dvi,vk , where vk

is a vacancy that is to be filled in the firm k ∈ F .
Assume now that the expected value µ of productivity z depends on the

number of positions, and the variance σ2 depends on the distance such that

µ = A+ b(ni) + εi,k, (4)

σ2 = −2a(di,k), (5)

where A ∈ R is a constant and a(di,k) ≤ 0. The term εi,k reflects the private
information that firm k ∈ F has on the productivity of individual i ∈ I.
These terms are not observed by an outsider but they affect the choices
made by the firms. Note also that when b is an increasing function, then
the expected productivity is increasing in the number of positions held by
individuals. Moreover, when a ≤ 0 is decreasing, the higher the distance the
larger the variance of the productivity.

It should be observed that this model can be interpreted in terms of
productivity signalling. The expected value µ is the expected value of the
productivity conditional on the number of positions, and σ2 is its variance. In
principle, the firm receives a signal on the candidates productivity as before,
but now the signal has a private component εi,k. The main assumption is that
the signalling leads to a conditional productivity distribution that depends
on εi,k, di,k, and ni with mean and variance as in (4) and (5).

The following proposition gives conditions under which the probability of
choosing a candidate with a certain number of positions and distance to the
firm is determined by the logistic formula of equation (1). The proof of the
result is presented in Appendix A.

Proposition 4. Assume that

1. the utility function of the firm k ∈ F is the CARA utility 1− exp(−γz)
for γ > 0,

2. the productivity z is normally distributed with mean and variance as in
(4) and (5), and
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3. εi,k, i ∈ I, are independent identically distributed random variables
from type I extreme value distribution that are known by the firm.

It follows that the conditional probability of filling a vacancy Ph is of the form

Ph (ni, di,k) = exp [γa(di,k) + b(ni)] /C, (6)

where C > 0 is the normalizing constant.

The above result is important, because it means that there is a simple
structural model underlying the exponential search model. Note that the
same result as above is obtained alternatively by assuming a CARA utility
1−exp(−z) and a variance −2γa(di,k). Hence, the variance and the constant
of risk aversion γ cannot be disentangled in this structural model.

Proposition 4 offers an interpretation for the parameters α and β of the
model corresponding to equations (2) and (3). The parameter β is the rate
at which the productivity decreases or increases as a function of the degree
|x|K/K. The parameter α, on the other hand, describes the rate at which the
”risk” associated with the productivity signal changes when the distance of
a candidate from the firm increases. Note that α in (3) could be interpreted
directly as the coefficient of risk aversion γ when the variance is equal to the
distance; σ2 = d. Alternatively, α could be interpreted as the multiplier in
the variance term σ2 = αd while γ = 1. Hence, the estimated α is basically a
composition of the coefficient γ and the rate of increase in the variance when
the distance increases.

4.3. Extensions and modifications

In the model discussed in previous sections, it is assumed that all the
offers are accepted and all the positions are filled. However, in general this
is rarely the case in labor markets. In this section we briefly discuss how the
model can be extended to the more standard case where there are vacancies
and unemployed people at the same time.

Recall that there are two channels in recruiting new people in our model:
the network channel, which we mainly focus on, and the more conventional
channel. Which of the two channels is used is determined by the proba-
bility Pn. When the new people comes outside the network we could use
the usual search and matching technology; the expected number of positions
filled M1(U, Y ) depends on the number of people U searching for a job and
the number Y of vacancies that are filled outside of the network.

To allow for unemployed job seekers in the network, it should be assumed
that the network N no longer represents a two-mode network but a usual
one-mode social network of ties between people. As outlined in the end of
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Section 2 this modification is straightforward, but requires changing the way
how edges are rewired. The second matter is that we need to keep track of
peoples affiliations and the employment status. For simplicity, let us assume
that the network N carries this information, and let V stand for the vacancies
that are filled through the network channel. Moreover, now the distance is
between individuals rather than firms as outlined in the end of Section 2, and
the degree is the number of ties that a person has.

In the previous sections it is assumed that all companies know the pool of
people in the network N and get signals on the productivity of each of them.
However, we could assume that each firm has access only to the component
of the network that includes the workers of the firm. Note that the network
may be fragmented into several components such that different firms can
reach different people through the network channel.

Recall that each firm searches for people that maximize the expected
payoff E[u(z)|s(n, d)]. There may, however, be a reservation payoff level for
hiring anyone, and this payoff level can be determined by the option value
of waiting for the next period and searching again, i.e., it may depend on
N , Y , and V . Given that the reservation payoff is high enough, there will
be a positive probability Pe(N, Y, V ) that a vacancy is not filled, and this
probability determines the expected number of people who are found through
the network channel M2(N,U, Y, V ).

By combining the two channels of finding new people, it is possible to
derive a network dependent matching function M(N,U, Y, V ) = M1(U, Y ) +
M2(N,U, Y, V ) from the basic elements of our model. Recall that U is the
number of unemployed people outside of the network N , Y is the number of
vacancies that are filled outside of the network, and V is the set of vacancies
filled through the network channel. Moreover, the network N carries the
information on the employment status and the affiliation of each person. In
particular, N relates each vacancy to a certain component of the network
corresponding to the individuals that a firm can reach through the network
channel. Notice that Y and V are random variable determined by Pn and
Po. In essence, Po determines the rate of job destruction and Pn allocates
the vacancies to the two recruitment channels.

Finally, it is important to observe that in our model the network does
not keep memory of past affiliations or past contacts. However, in practice
the social network may have memory. For example, past affiliations may
affect future referrals. Accounting for the impact of past affiliations would
require modeling how the ties between people decay in time. In essence, we
are assuming immediate decay in this work. One possible way to incorporate
time decay of ties would be to assume that the past affiliations or ties are
forgotten with some probability. This extension is, however, beyond the
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scope of this work.

5. Fitting the Model to Data

Assume that instead of observing neighbourhood configurations there is
some variable y that depends on the neighbourhood configuration and is
observed at time instants t = 1, . . . , T . It is assumed that y(N t) ∈ R

k.
For example, y could be the ”degree” distribution, in which yi(N

t) equals
the number of people that are affiliated to i firms when the neighbourhood
configuration is N t.

The approach for finding the parameters that define the probabilities for
filling vacancies relies on fitting the time average of variables that depend on
the neighbourhood configurations into observed data. To be specific, assume
that y(N t) depends on the neighbourhood configuration and an empirical
realization y is observed. In practice, vector y can be computed by taking
the time average of variables over periods t = 1, . . . , T .

Assume that the parameters of the model belong to a set X ∈ R. For a
given parameter value x ∈ X, the stochastic process determined by these
parameter values leads to the time average y(x) ∈ R

k over the periods
t = 1, . . . , T . In practice this time average can be found approximately
by simulating the evolution of the network from a given initial setup sev-
eral times and taking the average over the simulations. The parameters can
be fitted by minimizing the least squares criterion ‖y(x) − y‖2, where ‖ · ‖
stands for the usual Euclidean norm. Depending on the relevant properties
that want to be fitted, different network dependent variables or distributions
can be chosen. Let us next describe in more detail the particular criterion
used in the empirical application of the following section.

5.1. Fitting the exponential search model

In this section the purpose is to explain how the exponential search model
as specified in equations (2) and(3) can be fitted into empirical data. The
same approach can, however, be applied for other functional forms, too.
The relevant parameters of the model are Pn, K, α, β, d∞, and the proba-
bilities Po(nv). Because there are two separate stages—opening and filling
of vacancies—we present a two-step procedure to fit the model. The first
step concerns the opening of vacancies, i.e., Po(nv), and the second how the
vacancies are filled, i.e., the parameters α, β, and d∞.

From now on the number of positions that a holder of a position v ∈ V
has, will be called the degree of v. Let V (n) stand for the number of positions
with degree n and Vo(n) the number of positions that have been opened and

18



have had degree n. The ratio Vo(n)/V (n) is the empirical frequency at which
vacancies with degree n open.

Recall that the parameter K which appears in equation (3) indicates the
largest relevant degree. Hence, this parameter can be taken as the largest
degree observed in the data. Let us next describe how to obtain an estimate
of the probability Pn for a new board member to be taken outside of the
people currently in the boards. Let no stand for the number of vacancies
opened during the period of time spanned by the data, and let ne denote the
number of new people coming outside of the network during the time period.
The estimate for Pn is simply ne/no.

Finally, let us turn to the question of finding the remaining parameters α,
β, and d∞. Because α is related to the effect of distance in filling the vacancies
and β is related to the degree, it can be argued that these parameters should
be chosen such that the distance and degree distributions of new people fit
empirically observed distributions. To be more specific, let y1(α, β, d∞) stand
for the distribution of distances of newly recruited people from the position
that they were chosen conditional on the person being found in some of the
neighbourhoods of the vacancy that was filled. Moreover, y2(α, β, d∞) stands
for distribution of degrees of newly recruited individuals conditional on being
found among the people in the boards of the previous period. Note that y1

and y2 are vectors containing the numbers of newly recruited people within
different distances and with different degrees.

In practice y1(α, β, d∞) and y2(α, β, d∞) are obtained by taking the time
averages of the simulated distributions. Let ȳ1(α, β, d∞) and ȳ2(α, β, d∞)
stand for the resulting distributions when normalized into probability distri-
butions. The corresponding empirical probability distributions are denoted
by y1 and y2. Note that these distributions are treated as vectors. The
criterion used in Section 6 for fitting the parameters α, β, and d∞ of the
exponential model is

‖ȳ1(α, β, d∞)− y1‖2 + ‖ȳ2(α, β, d∞)− y2‖2.

The role of d∞ is important for networks involving multiple connected
components. For example, it affects the probability at which a company
connected to a clique outside of the main component recruits new board
members from the companies in the main component. In a sense, it is a
virtual distance between two firms that are not connected.

5.2. Leaving vacancies empty

In practice the number of positions in companies varies. There can be
several reasons for this. First, when someone leaves a position it may take
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some time to find a new person. Consequently, the vacancy is temporarily left
empty. The second reason is that the number of positions can be increased
if an interesting candidate is available. One phenomenon that can be seen
in real world data is ”board swapping”; a person leaves one position and is
immediately given another somewhere else. For example, in the empirical
application presented in next section, 4%–8% of yearly board appointments
involve persons switching from one board to another.

One way to treat empty positions is simply to assume that no vacancy
is left empty. The number of position in a board is taken as the maximum
number of board members observed in a period of time. When simulating
the model it can be assumed that all these positions are filled as if there
was somebody holding each empty seat. This means that when counting the
empirical distributions for degrees, an empty position is treated as if it was
held by somebody who has no other positions.

6. Empirical Application

6.1. Data

The initial data consists of 826 Finnish companies, their board members
and CEOs in each year from 2005 to 2015 as documented in the Finnish Trade
Register. The set of companies includes the five hundred largest companies
in 2013, 2008, 2003, 1998, and the companies listed in Nasdaq Helsinki in
2013. Majority of companies are non listed; 128 are listed. Due to mergers,
acquisitions, and bankruptcies, there are also companies that do not exist
throughout the sample period. These companies are simply excluded from
the analysis leaving us with 730 firms.

The firms corresponding to the relevant labour market of board profes-
sionals is extracted recursively: first all the firms that are in the main compo-
nent in all years are included, all firms connected to these companies in some
year through interlocking board members are included, and so on until no
new firms are included. Note that the main component can be different each
year and therefore taking all the main components would lead to a slightly
different selection. Altogether this selection consists of 484 firms, and it can
be considered as the pool of companies acting in the same labour market.
In particular, if any of the firms in our sample has recruited a new board
member, who is already in a board of some company, it is highly likely that
the firm from which the new person is taken is in our sample. Moreover,
the selection of the firms that is left outside of our sample is only weakly
networked; 86% of these firms are not connected to any other firm, and the
largest cliques in this pool contain only three firms. Results for the selection
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of firms that have been in the main component in each year are presented in
Appendix B.

The descriptives statistics of the sample of 484 companies are collected in
Table 1. Note that some of the model parameters can be directly obtained
from these observations. In particular, the estimated probability Pn that a
new board member is an outsider is 80% is obtained by dividing ne with
no. The probability of opening a vacancy is on aggregate about 16%, and
the largest observed degree in the data is K = 7. In our data the number
of board members varies between 2 and 33 people median being 12. Recall
that the board size is usually set in the corporate by-laws, but if not, then
there should be from one to five board members according to the Finnish
legislation.

Value
Number of firms 484
Number of positions 3731
Median board size 12
Median number of empty positions/year 630
Total number of vacancies (no) 5787
New board members without a position (ne) 4639
New board members with a position 1148
Probability of recruiting an outsider (Pn) 80%
Largest observed degree (K) 7
Average clustering coefficient of the firm projection 0.20

Table 1: Descriptive statistics.

What is notable in the descriptive statistics is that only 20% of the new
board members are found through the network channel. However, even
this fraction is enough to create a rather well connected network contain-
ing around 350 companies in the main component each year, while at the
same time people in the network change reasonably fast. Note that not all
companies in our sample belong to the main component, but each of them
is at least ”indirectly” linked to the main component when considering the
firm links throughout out the period 2005–2015. The majority of new board
members, 80% of them, are people who did not have any affiliation in previ-
ous year’s network. Majority of these people, 98% of them, did not have any
affiliation in any prior year when getting nominated.
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6.2. Estimated model

The solid line with circles in panel (a) of Figure 3 illustrates the distance
degree of newly recruited board members when they are taken from the pop-
ulation of all holders of the available board positions in the network. The
dotted line with triangle markers represents the distribution for a model in
which the new persons are selected at random, i.e., α = β = 0 in equa-
tions (2) and (3). As can be seen, the observed distribution is considerably
skewed towards small distances compared to the distribution in the random
model. This indicates that there is a considerable distance effect in filling
the vacancies.

The skewness of the distance distribution towards small distances means
that it is not only that vacancies are filled from immediate neighborhoods in
the network but also from further away in the network. We emphasize that in
the literature on social networks it is typical to test the likelihood of a triadic
closure, which in our case would mean that a contact of a board member
becomes linked to his or her board members, i.e., the new board members
comes from distance one. The distance distribution shows that the other
distances matter, too, hence giving evidence that the indirect connections
are highly relevant in the search of new board members.

The degree distribution of new board members is presented in panel (b)
of Figure 3. This distribution has a slightly fatter tail than the corresponding
distribution of the random model, indicating that there is a form of preferen-
tial attachment in filling the vacancies. The distributions of Figure 3 are the
ones that are used in fitting the parameters α, β, and d∞ of the exponential
search model (2) and (3). The empirical frequencies at which vacancies are
opened for positions with different degrees are used as probabilities Po(nv);
these are (0.16, 0.14, 0.15, 0.13, 0.11, 0.13, 0.19) for degrees one, two, and so
on. Apart from degrees 3, 6, and 7, these differ statistically significantly
from the empirical frequency for the whole population 15.5%.‡ The rest of
the estimated parameters are collected in Table 6.2. Standard errors were
obtained by parametric bootstrapping; 200 samples of data were simulated,
and the model was refitted to these networks.

When comparing the empirical and simulated distributions, it can be seen
that the fitted model performs well. The simulated distributions of distances
and degrees of new board members are the gray curves in Figure 3. The
non-monotonicity of the distance distribution is an interesting detail which

‡For degrees 6 and 7 we observe less than 20 vacancies, which explains why the prob-
abilities 0.13 and 0.19 are not statistically different from 0.155 in a one-way Chi-squared
test.
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Figure 3: (a) Distance distribution of new board members (solid/circle) and 50 simulated
distributions corresponding to the fitted model (gray) and a distribution with randomly
filled vacancies (dotted/triangle). (b) Degree distribution of new board members and
50 simulated distributions corresponding to the fitted model (gray) and a model with
randomly filled vacancies (dotted).

Value SE 95% CI Interpretation
α 0.79 0.06 (0.69, 0.90) Distance parameter in equation (2)
β 1.29 0.24 (0.95, 1.50) Degree parameter in equation (3)
d∞ 11.5 0.89 (9.9, 11.9) Distance between unconnected positions

Table 2: Parameter estimates, standard errors (SE), and 95% confidence intervals (95%
CI).
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results from the network being composed of several components that are not
connected to each other in each period. In particular, firms outside of the
main component are typically members of small cliques of companies, and
therefore when searching for new board members among their neighbours,
they tend to find them very close in the network. The parameter d∞ plays an
important role for these companies, because it determines the probability of
recruiting people outside of the boards in their neighbourhoods. In particular,
d∞ affects directly to the probability of person being recruited outside of the
clique to which the company belongs to. Second, this parameter affects the
non-monotonicity of the distance distribution. The higher the value of d∞

the less likely it is that firms within small cliques appoint persons found in
the main component, and rather appoint persons found in the same clique,
i.e., within distance one. Hence, increasing d∞, increases the peak at distance
one.

In addition to matching well to the empirical distributions over degrees
and distances of new board members, the other characteristics of the fitted
model are reasonably close to empirical observations. For example, when
comparing the simulated degree distribution of the fitted model and the em-
pirical distribution in terms of frequencies, they are close to each other (the
square error is 0.001 for the probability distributions of degrees). The aver-
age clustering coefficient of the firm projection of the fitted model is about
0.17, while the average over the observed networks is 0.20.

The main lesson from our empirical application is that the indirect con-
nections matter a lot when new board members are searched through the
network channel, and the new board members are not necessarily chosen
from nearby neighborhoods in the network. This supports the hypotheses
that the network transmits information regarding potential board members
rather than serves the purposes of favor exchange. Comparisons to the spec-
ification where only short distances would matter in the selection are pre-
sented in Appendix B. The shape of the distance distribution indicates that
signals on the quality of people diffuse at longer distances in the network.
Although our application is rather specific, it is likely that this distance effect
is a common feature of the network search channel in other labor markets
as well. Moreover, we believe that similar patters are present in the corpo-
rate networks of other countries, too. Many of the firms in our sample are
internationally networked both through ownership and board members. For
example, our rough estimate for the number of foreign board members in our
data is 20%. Hence, our findings are likely to reflect international recruitment
practices.
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7. Conclusions

In this work we have formulated a tractable model for analyzing the net-
work search channel in recruiting new people. In this paper the search model
is presented for two-mode networks where people are connected to each other
by sharing the same affiliation. This restriction is motivated by our applica-
tion related to board interlock networks, but we emphasize that the formu-
lation of the model to a more standard one-mode setup is possible. What is
important in two-mode networks is that an individual may hold several posi-
tions at the same time, and it is exactly the people having multiple positions
who create the ties between people in the network. Second, the two-mode
structure allows for an easy way to keep track of peoples’ affiliations and
updating them simply by rewiring a single edge each time when someone is
given a new position.

The search model has simple microeconomic foundations: the distance
and degree of individuals in the network affect the productivity signal that
the companies have on them. The further away a person is from a company,
the less reliable the signal, and the higher the degree, the larger the expected
productivity. These features can be interpreted in terms of peer referral
and preferential attachment, respectively. It is also demonstrated that the
model fits well to empirical data and is capable of explaining the formation
of board interlock networks. Moreover, the empirical application shows that
social networks play an important role when firms hire new board members,
and the structure of the board interlock network is shaped by the search
process.

Our empirical findings support the hypothesis that board interlocks help
in screening, and potentially enhance the firm-board member match. This is
in line with the findings indicating that well connected firms tend to perform
better than less connected (Larcker et al., 2013). However, the relationship
between firm performance, wages, an corporate governance is to be verified
for our sample of firms. In particular, if board interlocks exchange favors, we
would expect indicators related to the quality of corporate governance to be
positively correlated with the value of the firm, and negatively with executive
wages. If on the contrary, board interlocks help in screening, as suggested by
our findings, we should not expect wages of board members to change with
measures of firm governance.

There are several possible extensions of the model, such as allowing for
longer memory in the affiliations or firm heterogeneity in their practices of
opening and filling vacancies. In particular, there could be a tendency to re-
cruit new board members from same type of companies, see Currarini et al.
(2009) on the role of same-type bias in a matching process of friendship net-
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work formation. It is possible to include individual and firm level control
variables in the exponential search model introduced in this work. In partic-
ular, the questions related to the impact of age, experience, and gender on
the likelihood of becoming selected to a vacancy are of interest and possible
future extensions of the model. Another line of generalizations would be to
let the number of positions and firms vary.

Appendix A. Mathematical Proofs

Proof of Proposition 1. To prove the irreducibility it is sufficient to show that
it is possible to get from one neighbourhood configuration to any other by
opening and filling the vacancies. Hence, take two neighbourhood configu-
rations N1 and N2. First, by A1 and A2 there is positive probability that
all the positions of N1 are opened in the first period one and filled with the
new individuals. Moreover, there is a positive probability that after filling
the vacancies with new individuals, exactly the ones which have holders with
multiple positions in N2 are opened (A1) in the second period. For each va-
cancy it is possible that any of the holder of other positions becomes the new
holder by (A3). Hence, there is a positive probability that the new holders
have exactly the same set of positions that the holders of the positions in
N2.

Proof of Proposition 2. The productivity is zj = sj + εj, j = 1, 2, for signals
s1 = s (nv1 , dv1,v) and s2 = s (nv2 , dv2,v). The terms εj, j = 1, 2, are mean
zero error terms. The ex-ante distributions of s1 and s2 are the same, while
ε1 is a mean preserving spread of ε2 by the assumption of the proposition.

Consider the functions f j(s) = Eεj [u(z)|s], j = 1, 2, i.e., the expected
utilities for a given signal s and mean zero error terms ε1 and ε2. Because
the firm is risk averse, it holds that f 2(s) ≥ f 1(s). The probability that the
holder of vj is better than the holder of another position is the probability
that f j(s) is higher than ū which corresponds to the expected value of the
other position. Because the ex-ante distributions of signals are the same and
f 2(s) ≥ f 1(s), it follows that the probability of f 2(s) ≥ ū is no smaller than
the probability of f 1(s) ≥ ū. Hence, the result follows.

Proof of Proposition 3. To suppress the notation let us denote the signals
by s1 = s (nv1 , dv1,v) and s2 = s (nv2 , dv2,v). Recall that once the signal is
realized the productivity is zj = sj + εi, j = 1, 2. Given that the ex-ante
distributions of signals are the same, the first order stochastic dominance
implies that ε2 has the first order stochastic dominance over ε1. By definition
this means that for any increasing u it holds that f 2(s) ≥ f 1(s) for all s,
where f j(s) = Eεi [u(z)|s], j = 1, 2. As in the proof of Proposition 2 it
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follows that the probability of choosing the holder of v1 is no larger than the
corresponding probability for the holder of v2.

Proof of Proposition 4. Taking the expected value of the CARA utility over
the normal distribution with mean µ = A + b(ni) + εi,k and variance σ2 =
−2a(di,k) yields

1− exp
(

−γµ+ γ2σ2/2
)

= 1− exp
[

γ(−A− b(ni)− εi,k)− γ2a(di,k)
]

.

Maximizing this function is equivalent to maximizing

γa(di,k) + b(ni) + εi,k.

Because εi,k, k ∈ F and i ∈ I, are type I extreme value distributed, the ex
ante probability of choosing a candidate is determined by the logit expression
(6) for the conditional choice probabilities, see, e.g., McFadden (1981).

Appendix B. Auxiliary Estimations

In this appendix we estimate the model for alternative sample selections
and consider the outcomes when the search in the network is restricted in
distance.

First, let us next consider how the results change when the model is
estimated for a different selection of firms. The specification analyzed in the
main body is referred to as the baseline selection. We compare the baseline
selection to the one including firms that have been in the main component of
the firm projection throughout the time period 2005–2015 (denoted by ∩PC
in Table B.3). To make the parameter estimates of β comparable, K is set to
7 in the estimation. We also tested how the selection of firms would change
if we took the union of firms in the main component of each period. This
would lead to a selection of 466 firms, i.e., only 14 firms from the baseline
selection would be dropped, and the estimations would lead practically to
same results as in the baseline case.

Selection α β d∞ Pn firms positions
Baseline 0.79 1.29 11.5 80% 480 3731
∩PC 0.97 1.94 18.8 77% 193 1783

Table B.3: Parameter estimates for different selections of firms.

As can be observed from the estimated parameters, both the distance
and degree terms are higher in the ∩PC case compared to the baseline selec-
tion. This means that the firms who are better networked put also stronger
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emphasis on candidates positions in the network. This is also visible in the
distance distribution of Figure B.4. Moreover, these firms also tend to re-
cruit new board members among each others’ boards, i.e., they show a form
of homophily. Note that Pn, the probability of recruiting people outside of
the boards of 193, is 77%, which is smaller than in the baseline selection even
though the pool of companies is much smaller.
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Figure B.4: Distance distributions of new board members in the baseline case; empirical
(solid/star) and fitted (gray/triangle), and ∩PC case; empirical (dashed/circle) and fitted
(gray/diamond). The fitted distributions are from 50 simulations.

Recall that if the board nominations reflect exchanges of favor, we would
expect the short distances to be most important in finding new board mem-
bers. To test what would happen if the search is restricted firms’ neigh-
borhoods within different distances, we fitted the model with the restriction
that all people in the network that are further away than d̄ are treated as if
they could not be reached through the network channel. Figure B.5 shows
the distance distributions for the fitted models for different values of d̄. As
can be seen, for small values of d̄ the distance distribution is considerably
far from the observed distribution. This supports the hypothesis that the
information on possible board members flows through the network.

The reason why there is no peak at distance one when d̄ = 1 is that if the
parameter α was increased, which would mean that people are more likely
to come from distance one, then the network would soon fragment such that
the peak at distance d∞ would increase. Hence, a fragmented network with
small cliques of firms would possibly indicate that board nominations reflect
favor exchanges.
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Figure B.5: Distance distributions of new board members in the baseline case; empirical
(star/dashed), fitted (triangle/gray), and ∩PC case; empirical (circle/dotted) and fitted
(diamond/gray). The fitted distributions are from 50 simulations.
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A. Calvó-Armengol, Y. Zenou, Job matching, social network and word-of-
mouth communication, Journal of Urban Economics 57 (2005) 500–522.

S. Cheng, Board size and the variability of corporate performance, Journal
of Financial Economics 87 (2008) 157–176.

29



S. Currarini, M.O. Jackson, P. Pin, An economic model of friendship: Ho-
mophily, minorities, and segregation, Econometrica 77 (2009) 1003–1045.

D. Czarnitzki, K. Kraft, Capital control, debt financing and innovative ac-
tivity, Journal of Economic Behavior and Organization 71 (2009) 372–383.

P. Diamond, Mobility costs, frictional unemployment, and efficiency, Journal
of Political Economy 89 (1981) 798–812.

C. Dustmann, A. Glitz, U. Schönberg, H. Brücker, Referral-based job search
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