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ABSTRACT

We derive a necessary and a sufficient condition for Nash implemen-
tation with a procedurally fair mechanism. Our result has a nice ana-
logue with the path-braking result of Maskin [Nash equilibrium and
welfare optimality, Rev. Econ. Stud. 66 (1999) 23-38.], and therefore, it
allows us to give a simple characterization of those choice rules that are
implementable, but not in a procedurally fair way. This reveals the con-
straints that insisting on procedural fairness impose on the collective.
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1 Introduction

Implementation theory studies the following question. There is a set of

agents, a set of feasible outcomes, and a set of possible states that define

preferences over these outcomes. A central agency, or the mechanism de-

signer, wants to make a choice that depends on the state. The only thing

that central agency can rely on in creating incentives is that preferences

change between states. The issue is then whether a game, or a mechanism,

can be designed so that at the equilibrium the wish of the central agency is

fulfilled.

Although many theoretical questions have been solved by now, one central

dilemma remains: Why are most mechanism in the real world so simple in

comparison to the optimal mechanisms found in the theoretical literature.

This is unfortunate since the focus of mechanism design has been on prac-

tical application from the beginning. The two leading explanations for this

apparent simplicity are:

(1) That the mechanism design literature assumes too much common

knowledge of the environment among the agents and the central agency.

Therefore, a weakening of these assumption is needed to conduct useful

analysis of practical problems. This is known as the Wilson doctrine1 and

its implications are studied in Bergemann and Morris (2007) among others,

and

(2) that the presence of competing mechanisms does not allow detailed

fine tuning. This is well illustrated by the fact that the revelation princi-

ple does not necessarily hold when there is competition among mechanism

designer (Peters and Epstein, 1999), but predicted already by the classic

result of Rothschild and Stiglitz (1976), who show that there may not exist

any equilibria in insurance markets since, given the insurance portfolio of

one company, others can always reshape their own to attract more good

customers.2

1Originally formulated by Wilson (1987).
2One could express this by saying that mechanism design should turn from partial
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Needless to say, frequently both, and many more for sure, have their own

part to play. The goal, however, is to recognize the main driving force of

simplicity. We study a third reason, and what kind of properties it implies

for the choice rules, suggested by a casual observation:

(3) Often people do not care whether the goal of the central agency is

fair or not, rather they simply demand that the decision making procedure

must be fair [see Moulin (1997) for a general discussion]. This is most

relevant in social choice problems, exemplified by the fact that most voting

rules are fully symmetric, but can certainly have effects in other cases too.

There are many papers that investigate what can be implemented using a

specific class of mechanism [Tian (1989), Sjöström (1994), Dutta, Sen, and

Vohra (1995), Tatamitani (2001), Chen (2002), Mathevet (2010)]3, but they

do not give a general characterization of the constraints that insisting on

procedural fairness impose, and then there are many papers that investi-

gate exactly these constraints [Galbiati (2008), Rouillon (2013)], but only

in specific settings. Therefore, a general characterization is obviously called

for.

As a general rule the literature on fairness can be divided into two parts

(Moulin, 1997): Papers that deal with procedural fairness (Azrieli and Jain,

2015) and papers that deal with end state fairness [Fleurbaey and Maniquet

(1997), Sakai (2007)]. The difference is that procedural fairness is a property

of the mechanism, while end state fairness is a property of the goal that

central agency has. As already explained, our focus is on those cases where

agents care only about the procedural fairness, and end state fairness plays

no part. We strongly believe that this is the binding constraint in real wold

applications.

The rest of the paper is organized as follows. In Section 2 we introduce the

setup. In particular, we define what is meant by a procedurally fair mech-

anism. In Section 3 we define a property called permutation monotonicity,

equilibrium analysis to general equilibrium analysis.
3For a general discussion see Saijo, Tatamitani, and Yamato (1996).
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which has a nice analogue with standard monotonicity, and show that it

is a necessary condition for Nash implementation with a procedurally fair

mechanism. Then, in Section 4, we show that permutation monotonicity

and no-veto power are together sufficient for Nash implementation with a

procedurally fair mechanism. Finally, Section 5 concludes. Here we explain

how our characterization, together with that of Maskin (1999), can be seen

as a characterization of the limitations that insisting on procedural fairness

impose on the collective.

2 The Setup

Let I = {1, . . . ,n} be a finite set of agents, X a non-empty set of alternatives,

and Θ the set of states. We assume throughout that the set of states is a

subset of a product space i.e. Θ ⊆
�n

i=1Θi . A choice rule (CR) f : Θ→ X

associates a non-empty set of alternatives f (θ) ⊆ X to each state θ ∈ Θ.

This represents the goal of a central agency (mechanism designer) and it

is interpreted as selecting the optimal, or acceptable, alternatives at each

state. However, central agency does not know the true state, only agents

do. Therefore, it has to create incentives for the agents to reveal their

information, and this can only be done if preferences change between states.

The preference relation of agent i at state θ ∈Θ is denoted by �θi .

Next we have to define what is the method that central agency can use to

elicit the information from the agents. Given n message spaces M1, . . . ,Mn,

a mechanism g on X is a mapping

g :M1 × · · · ×Mn→ X.

We denote M = M1 × · · · ×Mn and write this mechanism as G = (M,g).4

Once a state θ ∈Θ is given, and preferences are therefore fixed, mechanism G

becomes a game Γ(θ) = (G,θ). The message profilem∗ = (m∗1, . . . ,m
∗
n) is a pure

strategy Nash equilibrium of this game if, and only if, g(m∗) �θi g(mi ,m
∗
−i )

4Although g already defines the message space.
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for all i ∈ I and all mi ∈Mi .
5,6 The set of all pure strategy Nash equilibrium

profiles of Γ(θ) is denoted by NE(G,θ). For arbitrary games the size of this

set can be anything between empty and infinite.

We say that mechanism G Nash implements CR f :Θ→ X if g (NE(G,θ)) =

f (θ) for all θ ∈ Θ. In words, that is, if the outcomes at pure strategy

Nash equilibrium profiles coincide exactly with the CR f . A given CR is

then called Nash implementable if there exists some mechanism that Nash

implements it. The path-braking result of Maskin (1999) says that if a CR

is Nash implementable, then it is (Maskin) monotonic, and if it is monotonic

and satisfies no-veto power (NVP), then it is Nash implementable. Choice

rule f is monotonic, if for all θ,ψ ∈Θ, and all x ∈ f (θ), if Li(x,θ) ⊆ Li(x,ψ)

for all i ∈ I , then x ∈ f (ψ).7 It satisfies no-veto power , if for all θ ∈Θ, and

all x ∈ X, if x is the best alternative of at least n−1 agents at state θ, then

x ∈ f (θ).

This result assumes, however, that central agency can use any mechanism it

wants to. By contrast, we assume that the mechanism has to be procedurally

fair. A permutation is a one-to-one function π : I → I and the set of all

permutations is denoted by Π . When a permutation π is applied to an n

-profile, for example to a state θ, it means a permutation of the components,

that is π(θ) ≡
(

θπ(1), . . . ,θπ(n)
)

.8 In all our definition, given and forthcoming,

we assume that either the set of alternatives X does not depend on the

identity of the agents, in which case we denote it by A, or it consists of n

-profiles, in which case we denote it by Y . The first case X = A is a standard

social choice setting, like a voting situation, and the second case X = Y is a

standard economic setting, like a resource allocation problem. We want to

handle both cases at once.

Notice that in the first case permutation does not change the alternative,

5Here m∗
−i = (m∗1, . . . ,m

∗
i−1,m

∗
i+1, . . . ,m

∗
n), and (mi ,m

∗
−i ) = (m∗1, . . . ,m

∗
i−1,mi , m

∗
i+1, . . . ,m

∗
n),

as usual.
6We explain later on why it is legitimate to concentrate on pure strategies only.
7Monotonicity is called strong positive association by Muller and Satterthwaite (1977).
8π(θ) is not necessarily in Θ.
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that is π(a) = a for all (a,π) ∈ A ×Π , and in the second case permutation

affects the components of the alternative, that is π(y) = (yπ(1), . . . , yπ(n)) for

all (y,π) ∈ Y ×Π . Although it is reasonable to speak of state π(θ) even if it

does not belong to Θ, it is not reasonable to use π(y) in any mechanism if

it is not physically feasible i.e. π(y) < Y . Therefore, to avoid complications

like this, we assume that Y =
n
×
i=1
Z.9

Definition 1. Mechanism G = (M,g) is procedurally fair if for any

permutation π ∈ Π , and any message m ∈ M, such that g(m) = x and

g(Mi ,m−i ) = Xi for all i ∈ I , there exists another message m′ ∈ M, such

that g(m′) = π(x) and g(Mi ,m
′
−i ) = π

(

Xπ(i)
)

for all i ∈ I . �

Here Xi is the set of alternatives that agent i can get by unilaterally de-

viating from m. If X = A, then g(m′) = π(x) transform to g(m′) = x and

π
(

Xπ(i)
)

to Xπ(i), so the definition simplify considerably. The general con-

dition g(Mi ,m
′
−i ) = π

(

Xπ(i)
)

, which applies only in the case X = Y , means

that agent i is not only looking at the set Xπ(i) where agent π(i) was able

to deviate from m, but rather he is looking it placing himself in the shoes of

agent π(i).

Why do we not simply require full symmetry of the mechanism, that isM1 =

M2 = · · · =Mn and g(π(m)) = π(g(m)) for all (m,π) ∈M ×Π? The reason is

that, as a representation of procedural fairness, this is too demanding. For

example, suppose that g(m) = x = (x1, . . . ,xn) and m1 =m2 = · · · =mn. Then,

if we require full symmetry, it must be that

π(x) = π(g(m)) = g(π(m)) = g(m) = x.

As this holds for any permutation π, we get x1 = x2 = · · · = xn. However,

there is nothing procedurally unfair in a mechanism where the agents can

agree, by sending the same message, that an asymmetric outcome x ∈ X

should be selected. This is even more so if it is possible to agree on similar

grounds that π(x) should be selected by sending another message. The

point is that full geometric symmetry is certainly not the same thing as

9Preferences can be other regarding since we do not assume that x � y iff xi � yi .
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procedural fairness. The weaker assumption which says that if g(m) = x for

some m ∈ M, then there must exist another message profile m′ ∈ M, such

that g(m′) = π(x), is part of our definition.

Definition 2. We say that CR f : Θ → X is symmetric Nash imple-

mentable if, and only if, there exists a procedurally fair mechanism that

Nash implements it. �

In the rest of this paper we study what kind of properties procedural fairness,

as we have defined it, implies for the choice rule.10

3 Permutation Monotonicity

The following property is to symmetric Nash implementation what mono-

tonicity is to Nash implementation.

Definition 3. Choice rule f :Θ→ X is called permutation monotonic if

for all θ,ψ ∈Θ, all x ∈ f (θ), and all π ∈Π , if π
(

Lπ(i)(x,θ)
)

⊆ Li(π(x),ψ) for

all i ∈ I , then π(x) ∈ f (ψ). �

If X = A, then this property is almost monotonicity, the only difference

is that lower contour sets of x at θ can be permuted in any way. That is, the

condition on lower contour sets simplify to: Lπ(i)(x,θ) ⊆ Li(x,ψ) for all i ∈ I .

On the other hand, if X = Y , then the condition is much more complicated

since the set π
(

Lπ(i)(x,θ)
)

is usually not the set Lπ(i)(π(x),θ). This would

not necessarily hold even if preferences are such that x �i y iff xi �i yi .

Choice rule f is called anonymous, if for all θ,ψ ∈ Θ, and all π ∈Π, if

�θi =�
ψ

π(i)
for all i ∈ I , then f (θ) = f (ψ).11 For an anonymous CR it does not

matter who has which preferences. It is obvious that in the standard social

choice setting permutation monotonicity implies both monotonicity (select

π = id) and anonymity (select π in such way that �θi =�
ψ

π(i)
for all i ∈ I).

10See Pratt (2007) and Thomson (2011) for more on fairness.
11See Moulin (1988).
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However, the next example shows that monotonicity and anonymity are not

together sufficient to imply permutation monotonicity even in this case.

Example 1. Let I = {1,2}, A = {a,b,c,d}, and Θ = {θ,ψ}. Preferences at

different states are given in the table below12

State θ

Agent 1

c

a

b

d

Agent 2

d

b

a

c

State ψ

Agent 1

b

d

a

c

Agent 2

c

a

d

b

Let the CR f be such that f (θ) = {a} and f (ψ) = {d}. It is monotonic, since

L1(a,θ) * L1(a,ψ) and L1(d,ψ) * L1(d,θ), and anonymous, since preferences

at state θ are not a permutation of preferences at state ψ. However, it is

not permutation monotonic since L1(a,θ) ⊆ L2(a,ψ) and L2(a,θ) ⊆ L1(a,ψ),

while a < f (ψ). ♦

Our first theorem gives a necessary condition for a CR to be symmetric

Nash implementable.

Theorem 1. If CR f : Θ → A is symmetric Nash implementable, then

it is permutation monotonic.

Proof. Suppose that θ,ψ ∈ Θ, x ∈ f (θ), and π ∈ Π , are such that

π
(

Lπ(i)(x,θ)
)

⊆ Li(π(x),ψ) for all i ∈ I . We have to show that π(x) ∈

f (ψ). Let G = (M,g) be a procedurally fair mechanism that implements

f . Since x ∈ f (θ), there must exists m∗ ∈NE(G,θ), such that g(m∗) = x, and

g(Mi ,m
∗
−i ) ⊆ Li(x,θ) for all i ∈ I . Thus, by Definition 1, there exists another

message m ∈M, such that g(m) = π(x), and g(Mi ,m−i ) ⊆ π
(

Lπ(i)(x,θ)
)

for all

i ∈ I . Therefore, by assumption, m is a Nash equilibrium of G at ψ. Finally,

since G implements f , this implies π(x) ∈ f (ψ) as was to be shown. �

This theorem make no assumptions about the number of agents. As a

12The convention here is that an alternative higher in the table is preferred.

8



necessary condition, however, it can only give us negative conclusions.

Example 2 [Weak Pareto Correspondence]. An alternative x ∈ X is

weakly Pareto optimal at state θ if there does not exist another alternative

y such that y ≻θi x for all i ∈ I . It is well-known that a CR which selects

all weakly Pareto optimal alternatives at each states is Nash implementable

if there are at least 3 agents (it is monotonic and satisfies NVP). However,

all sub-correspondences of this CR are not Nash implementable, while some

of them are.13. Lets take another look at Example 1 where all alternatives

A = {a,b,c,d} are weakly Pareto optimal at both states.

Suppose that there is a third agent who has the same preference relation

a ≻ b ≻ c ≻ d at both states θ and ψ. This guarantees that NVP is satisfied,

and therefore implementability coincides with monotonicity. Furthermore,

to check monotonicity, we do not need to worry about the agent with the

same preference relation at both states. The CR f given in this example was

monotonic, and hence Nash implementable, but not permutation monotonic,

and therefore not by any procedurally fair mechanism. Let the CR h be

such that h(θ) = {a} and h(ψ) = {a,d}. It is easy to verify that this CR is

permutation monotonic. In the next section we prove that h is symmetric

Nash implementable. ♦

Example 3 [Individually Rational Correspondence]. Fix an alternative

x0 ∈ X. Maskin (1999) defines the individually rational correspondence f IR :

Θ→ X by the rule:

f IR(θ;x0) =
{

x ∈ X | x �θi x
0 for all i ∈ I

}

.

Furthermore, he shows that the following mechanism Nash implements it:

For each i ∈ I , let Mi = X (the set of alternatives), and then define the

outcome function g IR :M→ X as:

g IR(m) =















x, if m1 =m2 = · · · =mn = x,

x0, otherwise.

13g is a sub-correspondence of f if g(θ) ⊆ f (θ) for all θ ∈Θ
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Is this mechanism procedurally fair? First of all, notice that the set Xi

in Definition 1 is always either {x}, {x0} or {x,x0}. If X = A, then for any

message m ∈
n
×
i=1
X, the other message m′ of Definition 1 can be chosen as

m′ = (π(m1),π(m2), . . . ,π(mn)), and therefore the answer is yes.14 However,

if X = Y , then it depends on how x0 is selected. If this alternative is such

that x01 = x
0
2 = · · · = x

0
n, then message m′ can be chosen just as in the previous

case. Therefore, g IR is procedurally fair in this special case, although not

generally. By Theorem 1 this implies that f IR is permutation monotonic if

X = A or X = Y and x01 = x
0
2 = · · · = x

0
n. ♦

4 Sufficient Conditions

We are now ready to present the main result.

Theorem 2. Let n ≥ 3. If CR f :Θ→ X is permutation monotonic and

satisfies NVP, then it is symmetric Nash implementable.

Proof. To prove this claim we need a procedurally fair canonical mech-

anism. First of all, since state space Θ is not necessarily symmetric, we

define a virtual state space Θ
v by the rule: For any π ∈Π , and any θ ∈ Θ,

let the state θπ be such that the preference of agent i is �θ
π(i)

, and set

Θ
v ≡ {θπ | θ ∈Θ, π ∈Π } .

Notice that preferences at state θπ and θπ
′
can be the same even if π ,

π′. Moreover, central agency knows that all states in Θ
v are not logically

possible, it just needs to respect procedural fairness. Then, we expand f

into this set by defining a virtual choice rule (VCR) f v : Θv → X by the

condition:

f v(θπ) = π
(

f (θ)
)

for all θ ∈Θ and π ∈Π.

This is the only way to expand f in a symmetric way. The message space of

agent i is Mi =Θ ×Π ×X ×N+, and a typical message of agent i is denoted

14Notice that π(m) is
(

mπ(1),mπ(2), . . . ,mπ(n)
)

not (π(m1),π(m2), . . . ,π(mn)).
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by mi =
(

θi ,πi ,xi ,ni
)

. The outcome function g :M → X is then defined by

the following rules:

(1) If mi = (θ,π,x,ni ) for all i ∈ I , and x ∈ f v(θπ), then g(m) = x.

(2) Ifmj = (θ,π,x,nj ) for all j ∈ I\{i}, mi = (θi ,πi ,xi ,ni ), and x ∈ f v(θπ),

then set15

g(m) =















xi , if xi ∈ π
(

Li(π
−1(x),θπ)

)

,

x, otherwise.

(3) In all other cases, denote k = argmax
i∈N

ni , and set

g(m) = xk .

REMARK: The fact that this mechanism has no mixed strategy equilibria

can be proved exactly the same way as in Maskin (1999). Therefore, if

integer games and infinite message spaces are allowed, then it is legitimate

to focus on pure strategies only. ♦

Lemma. This mechanism is procedurally fair.

proof. There are three cases to consider depending under which rule the

outcome is calculated:

(1) Suppose that mi = (θ,π,x,ni ) for all i ∈ I , x ∈ f v(θπ), and g(m) = x.

Thus g(Mi ,m−i ) = π
(

Li(π
−1(x),θπ)

)

for all i ∈ I . Let ψ ∈ Π. By Def-

inition 1 we have to find a message profile m′, such that g(Mi ,m
′
−i ) =

ψ
(

π
(

Lψ(i)(π
−1(x),θπ)

))

for all i ∈ I , and g(m′) = ψ(x). Let m′ be such that

m′i = (θ,ψ ◦ π,ψ(x),ni ) for all i ∈ I .16 Then, since ψ(x) ∈ f v(θψ◦π) by the

definition of f v , we have g(m′) = ψ(x), and moreover

g(Mi ,m
′
i ) = ψ ◦π

(

Li((ψ ◦π)
−1(ψ(x)),θψ◦π)

)

= ψ
(

π
(

Lψ(i)(π
−1(x),θπ)

))

[

since (ψ ◦π)−1 = π−1 ◦ψ−1 for all π,ψ ∈Π, we get (ψ ◦π)−1(ψ(x)) = π−1(x),

and since Li(x,θ
π) = Lπ(i)(x,θ) for all (θ,π) ∈Θ×Π, we get Li(π

−1(x)),θψ◦π) =

Lψ(i)(π
−1(x)),θπ)

]

.

15All permutations π ∈Π are invertible and π−1 ∈Π .
16ψ ◦π is clearly a permutation.
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(2) Suppose that mj = (θ,π,x,nj ) for all j ∈ I \ {i}, mi = (θi ,πi ,xi ,ni ),

and x ∈ f v(θπ). Thus g(Mj ,m−j ) = X for all j ∈ I \ {i} and g(Mi ,m−i ) =

π
(

Li(π
−1(x),θπ)

)

. Let ψ ∈ Π. By Definition 1 we have to find a message

profile m′, such that g(Mj ,m
′
−j ) = X for all ψ(j) , i, g(Mψ−1(i),m

′
−ψ−1(i)

) =

ψ
(

π
(

Li(π
−1(x),θπ)

))

, and g(m′) = ψ(x). Let m′ be such that m′j = (θ,ψ ◦

π,ψ(x),ni ) for all ψ(j) , i, and choose mψ−1(i) in such a way that the outcome

is calculated using rule (2). Then, g(Mj ,m−j ) = X for all ψ(j) , i, and since

ψ(x) ∈ f v(θψ◦π) by the definition of f v , we have g(m′) = ψ(x), and

g(Mψ−1(i),m
′
−ψ−1(i)) = ψ ◦π

(

Lψ−1(i)((ψ ◦π)
−1(ψ(x)),θψ◦π)

)

=

ψ
(

π
(

Lψ(ψ−1(i))(π
−1(x),θπ)

)

= ψ
(

π
(

Li(π
−1(x),θπ)

))

[

here we have used all those conditions that were used in the previous case

as well with the additional fact that ψ(ψ−1(i)) = i
]

.

(3) This case is simple. Since g(Mi ,m−i ) = X for all i ∈ I , we can select

m′ =m. �

Let G = (M,g) denote the mechanism defined above. We prove that it

implements any CR that is monotonic and satisfies NVP and therefore it is

canonical.

Suppose that θ ∈ Θ is the true state, and x ∈ f (θ). Let the message profile

m = (m1, . . . ,mn) be such that mi = (θ, id,x,1) for all i ∈ N . If agent i

deviates unilaterally to rule (2), he can get any alternative from the set

π
(

Li(π
−1(x),θπ)

)

= Li(x,θ). Therefore, m is a Nash equilibrium of G at θ,

and since g(m) = x by definition, we have shown that f (θ) ⊆ NE(G,θ) for

all θ ∈Θ. A bit more work is need to prove the converse.

To begin with, if we have a Nash equilibrium where the outcome is calculated

using rule (2) or (3), then, since the outcome must be the best alternative

of at least n − 1 agents in both cases, NVP guarantees that the outcome

coincides with f . Suppose, therefore, that m ∈ NE(G,θ) and the outcome

is calculated using rule (1). That is, for some ψ ∈ Θ and y ∈ f v(ψπ), the

message of agent i ∈ N is mi = (ψ,π,y,ni ). Since ψπ is not necessarily the

true state θ, we need to show that y ∈ f (θ).
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By the definition of mechanism G, and the fact that m ∈ NE(G,θ), we get

π
(

Li(π
−1(y),ψπ)

)

⊆ Li(y,θ). Then, since

π
(

Li(π
−1(y),ψπ)

)

= π
(

Lπ(i)(π
−1(y),ψ)

)

,

π(π−1(y)) = y, and π−1(y) ∈ f (ψ) by definition, permutation monotonicity

implies y ∈ f (θ) as was to be shown. This complete the proof. �

This theorem has a nice analogue with the corresponding result of

Maskin (1999) given in Sect. 2 − it is just that monotonicity is replaced

with permutation monotonicity.

Example 4 (No-Envy Correspondence). There is a bundle of goods

Ω ∈ Rl++ to be distributed. Let zi ∈ R
l
+ be the bundle that is given to agent

i, Z =
{

z ∈ Rln+ |
∑n
i=1 zi = Ω

}

the set of feasible allocations, and Z0 =
{

z0 ∈

Rn+ | z
0 ≤Ω

}

the set of possible consumption bundles for any agent.17

At each state θ ∈ Θ, the preference relation �θi of agent i is continuous,

convex, and strictly monotone over Rl+. Now we assume, as usual, that

x �θi y iff xi �
θ
i yi . An allocation z ∈ Z is called envy-free at state θ if

zi �
θ
i zj for all pairs of agents i, j ∈ I .18 In words, no agent i prefers the

bundle of another agent zj to his own zi . The no-envy correspondence is

then defined as a choice rule ef :Θ→ Z that selects all envy-free allocations

at each state.

This correspondence satisfies NVP if there are at least three agents since the

best allocation is to get the entire endowmentΩ and leave everyone else with

nothing. Thomson (2005) gives a nice mechanism, that he calls the “divide

and permute”’ -mechanism, which Nash implements ef . Therefore, by the

theorem of Maskin (1999), it must be monotonic as well. It is not, however,

procedurally fair. Nevertheless, from the work of Galbiati (2008), we known

that ef can be Nash implemented with a procedurally fair mechanism. By

Theorem 2 this means that ef must be permutation monotonic. We verify

this directly.

17z ∈ Rl+ means that all components of z are non-negative and z ∈ Rln++ means that all

components of z are positive. Moreover, z0 ≤Ω means that z0i ≤Ωi for all i ∈ I .
18This concept was originally defined in Foley (1967).
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Suppose that θ,ψ ∈ Θ, x ∈ ef (θ), and π ∈Π , are such that π
(

Lπ(i)(x,θ)
)

⊆

Li(π(x),ψ) for all i ∈ I . Assume that π(x) < ef (ψ). By definition this means

that π(x)j ≻
ψ
i π(x)i for some i, j ∈ I , or equivalently, that xπ(j) ≻

ψ
i xπ(i)

for some i, j ∈ I . Hence xπ(j) ≻
ψ
i yi for all y ∈ Li(π(x),ψ), and therefore

xπ(j) , zπ(j) must hold for all z ∈ π
(

Lπ(i)(x,θ)
)

by assumption. This means

that xj , zj for all z ∈ Lπ(i)(x,θ), which implies xj ≻
θ
π(i)

xπ(i), so that x < ef (θ)

− a contradiction. Therefore π(x) ∈ ef (ψ) and ef is indeed permutation

monotonic. �

Just like in the case of weak Pareto correspondence, a sub-correspondence of

ef is not necessarily monotonic, and therefore not necessarily permutation

monotonic either, so this has to be checked every time.

5 Concluding Discussion

We have derived a necessary [Theorem 1] and a sufficient [Theorem 2] con-

dition for a CR to be Nash implementable by a procedurally fair mechanism

or symmetric Nash implementable. Although our characterization is simple

and it has a nice intuitive interpretation, which is a desirable feature for this

type of results, the most interesting result comes as a corollary from a com-

parison to the corresponding result of Maskin (1999). Recall that no-veto

power holds vacuously in any resource allocation problem (see Example 4).

Corollary. Choice rule is Nash implementable in an economic envi-

ronment, but not by any procedurally fair mechanism if, and only if, it is

monotonic, but not permutation monotonic. �

We saw in Example 2 that if a CR is efficient in the sense of weak Pareto op-

timality, which is a minimal desideratum in economic environments, then the

constraints imposed by permutation monotonicity are stronger than those

imposed by standard monotonicity.

Also another interesting observation emerge from a comparison to existing

literature. In a recent paper Azrieli and Jain (2015) study the same problem

14



as we do here, except that they focus on the case of incomplete information,

and hence use Bayes-Nash equilibrium as the solution concept. This is not

the only difference, however, since they rely on the revelation principle, and

therefore study partial implementation rather than full implementation as

we do here. Interestingly, although not surprisingly, their result stands in

a stark contrast to ours. While our conclusion is that symmetry (procedu-

ral fairness) is a strong constraint on implementability, since permutation

monotonicity is a lot more demanding than monotonicity, their conclusion

is that symmetry is only a weak constraint.19

There is a simple explanation for this apparent contradiction however. In

full implementation symmetry implies that with one equilibrium a symmetric

equilibrium is created alongside, while in partial implementation, with focus

on the truthful Bayes-Nash equilibrium only, this other equilibrium can be

neglected. Azrieli and Jain (2015) explain this by observing that symmetry is

not severely binding since the truthful equilibrium can be asymmetric. This

is not possible in full implementation since also the symmetric equilibrium

has to be accounted for.

19The contrast is made even deeper by the fact that their concept of symmetry is stronger

than ours.
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